logo

Origins, Current Status, and Future Challenges of Green Chemistry

PDF Publication Title:

Origins, Current Status, and Future Challenges of Green Chemistry ( origins-current-status-and-future-challenges-green-chemistry )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

References (1) Anastas, P. T.; Heine, L. G.; Williamson, T. C. Green Chemical Syntheses and Processes: Introduction. In Green Chemical Syntheses and Processes; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; American Chemical Society: Washington, DC, 2000; Chapter 1. (2) Anastas, P. T.; Lankey, R. L. Life Cycle Assessment and Green Chemistry: The Yin and Yang of Industrial Ecology. Green Chem. 2000, 289-295. (3) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; p 30. (4) Pollution Prevention Act of 1990. 42 U.S.C., Sections 13101- 13109, 1990. (5) Ember, L. Chem. Eng. News 1991, July 8, 7-16. (6) http://helios.unive.it/inca/ (7) http://www.chemsoc.org/networks/gcn/ (8) http://www.gscn.net/indexE.html (9) http://www.rsc.org/is/journals/current/green/greenpub.htm (10) Ritter, S. K. Green Chemistry. Chem. Eng. News 2001, 79 (29), 27-34. (11) Anastas, P. T.; Bickart, P. H.; Kirchhoff, M. M. Designing Safer Polymers; Wiley-Interscience: New York, 2000. (12) Mistele, C. D.; DeSimone, J. M. Metal catalysis and processing utilizing carbon dioxide. In Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes; Anastas, P. T., Williamson, T. C., Eds.; Oxford University Press: New York, 1998; Chapter 17. (13) Mesiano, A.; Beckman, E. J.; Russell, A. J. Biocatalytic Synthesis of Fluorinated Polyesters. Biotechnol. Prog. 2000, 16, 64-68. (14) Kravchenko, R.; Waymouth, R. M. Alternating Ethene/Propene Copolymerization with a Metallocene Catalyst. Angew. Chem., Int. Ed. 1998, 37, 922-925. (15) Matyjaszewski, K.; Patten, T. E.; Xia, J. Controlled/Living Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene. J. Am. Chem. Soc. 1997, 119, 674-680. (16) Jones, R. Supercritical CO2 Carbonation of Cement and Cement- Fiber Composites: The Supramics Process. In Green Engineering; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; American Chemical Society: Washington, DC, 2001; Chapter 10. (17) Wool, R. P. Affordable Composites from Renewable Sources (ACRES). In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients; EPA744-R-00-001; U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001; p 9. (18) Cargill Dow Polymers, LLC. Process to Produce Biodegradable Polylactic Acid Polymers. In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients; EPA744-R-00-001; U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001; p 51. (19) Shi, F.; Gross, R. A.; Ashby, R. Microbial polyester synthesis: novel bioprocesses using poly(ethylene glycol)s for structural control. In Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes; Anastas, P. T., Williamson, T. C., Eds.; Oxford University Press: New York, 1998; Chapter 11. (20) Leitner, W. Carbon Dioxide as Environmentally Benign Reaction Medium for Chemical Synthesis. Appl. Organomet. Chem. 2000, 14, 809-814. (21) Giles, M. R.; Griffiths, R. M. T.; Aguiar-Ricardo, A. I.; Silva, M. M. C. G.; Howdle, S. M. Fluorinated Graft Stabilizers for Polymeri- zation in Supercritical Carbon Dioxide: The Effect of Stabilizer Architecture. Macromolecules 2001, 34, 20-25. (22) Zhang, J.; Roek, D. P.; Chateauneuf, J. E.; Brennecke, J. F. A Steady-State and Time-Resolved Fluorescence Study of Quench- ing Reactions of Anthracene and 1,2-Benzanthracene by Carbon Tetrabromide and Bromoethane in Supercritical Carbon Dioxide. J. Am. Chem. Soc. 1997, 119, 9980-9991. (23) Fu, H.; Coelho, L. A. F.; Matthews, M. A. Diffusion coefficients of model contaminants in dense CO2. J. Supercritical Fluids 2000, 18 (2), 141-155. (24) Buelow, S.; Dell’Orco, P.; Morita, D.; Pesiri, D.; Birnbaum, E.; Borkowsky, S.; Brown, G.; Feng, S.; Luan, L.; Morgenstern, D.; Tumas, W. Recent advances in chemistry and chemical process- ing in dense phase carbon dioxide at Los Alamos. In Green Chemistry: Frontiers in Benign Chemical Syntheses and Pro- cesses; Anastas, P. T., Williamson, T. C., Eds.; Oxford University Press: New York, 1998; Chapter 16. (25) Meehan, N. J.; Sandee, A. J.; Reek, N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Poliakoff, M. Continuous, Selective Hy- droformylation in Supercritical Carbon Dioxide Using an Immo- bilised Homogeneous Catalyst. Chem. Commun. 2000, 1497- 1498. (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) Haˆncu, D.; Powell, C.; Beckman, E. J. Combined Reaction- Separation Processes in CO2. In Green Engineering; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; American Chemical Society: Washington, DC, 2001; Chapter 7. Micell Technologies. The MICARE Liquid CO2 Dry Cleaning Process. In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients; EPA744-R-00-001; U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001; p 25. Hughes Environmental Systems, Inc. DryWashTM: Carbon Dioxide Dry Cleaning Technology. In The Presidential Green Chemistry Challenge Awards Program: Summary of 1997 Award Entries and Recipients; EPA744-S-97-001; U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 1998; p 23. Gleason, K. K.; Ober, C. K. Environmentally Benign Lithography for Semiconductor Manufacturing. In The Presidential Green Chemistry Challenge Awards Program: Summary of 2000 Award Entries and Recipients; EPA744-R-00-001; U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics: Washington, DC, 2001; pp 11-12. Top Twenty Innovators: The Mothers of Invention. Chemical Specialties 2001, September/October, 35. http://www.thomas-swan.co.uk/pages/new.html Hitzler,M.G.;Poliakoff,M.ContinuousHydrogenationofOrganic Compounds in Supercritical Fluids. Chem. Commun. 1997, 1667- 1668. Breslow, R. Water as a solvent for chemical reactions. In Green Chemistry: Frontiers in Benign Chemical Syntheses and Pro- cesses; Anastas, P. T., Williamson, T. C., Eds.; Oxford University Press: New York, 1998; Chapter 13. Li, C.-J. Water as Solvent for Organic and Material Synthesis. In Green Chemical Syntheses and Processes; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; American Chemical Society: Wash- ington, DC, 2000; Chapter 6. Paquette, L. A. Indium-Promoted Coupling Reactions in Water. In Green Chemical Syntheses and Processes; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; American Chemical Society: Washington, DC, 2000; Chapter 9. Breton, G. W.; Hughey, C. A. A Grignard-like Organic Reaction in Water. J. Chem. Educ. 1998, 75, 85. Adams, C. J.; Earle, M. J.; Roberts, G.; Seddon, K. R. Friedel- Crafts reactions in room temperature ionic liquids. Chem. Com- mun. 1998, 2097-2098. Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room-Temperature Ionic Liquids as Novel Media for ‘Clean’ Liquid/Liquid Extraction. Chem. Commun. 1998, 1765- 1766. Blanchard, L. A.; Gu, Z.; Brennecke, J. F. High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems. J. Phys. Chem. B. 2001, 105 (12), 2437-2444. Brown, R. A.; Pollett, P.; McKoon, E.; Eckert, C. A.; Liotta, C. L.; Jessop, P. G. Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide. J. Am. Chem. Soc. 2001, 123, 1254-1255. Horvath,I.T.FluorousBiphaseChemistry.Acc.Chem.Res.1998, 31, 641-650. Vincent, J.-M.; Rabion, A.; Yachandra, V. K.; Fish, R. H. Fluorous Biphasic Catalysis: Complexation of 1,4,7-[C8F17(CH2)3]3-1,4,7- Triazacyclononane with [M(C8F17(CH2)2CO2)2] (M ) Mn, Co) To Provide Perfluoroheptane-Soluble Catalysts for Alkane and Alkene Functionalization in the Presence of t-BuOOH and O2. Angew. Chem., Int. Ed. Engl. 1997, 36, 2346-2348. Bergbreiter,D.E.Polymer-FacilitatedBiphasicCatalysis.InGreen Chemical Syntheses and Processes; Anastas, P. T., Heine, L. G., Williamson, T. C., Eds.; American Chemical Society: Washington, DC, 2000; Chapter 15. Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Catalysis as a Foundational Pillar of Green Chemistry. Appl. Catal. A: Gen. 2001, 221 (1-2), 3-13. Manzer, L. E. Chemistry and Catalysis: Keys to Environmentally Safer Processes. In Benign by Design: Alternative Synthetic Design for Pollution Prevention; Anastas, P. T., Farris, C. A., Eds.; American Chemical Society: Washington, DC, 1994; Chapter 12. Dijksman, A.; Marino-Gonza ́lez, A.; I Payeras, A. M.; Arends, W. C. E.; Sheldon, R. A. Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System. J. Am. Chem. Soc. 2001, 123, 6826-6833. Mubofu, E. B.; Clark, J. H.; Macquarrie, D. J. A novel Suzuki reaction system based on a supported palladium catalyst. Green Chem. 2001, 3 (1), 23-25. 692 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 35, NO. 9, 2002 Origins, Status, and Challenges of Green Chemistry Anastas and Kirchhoff

PDF Image | Origins, Current Status, and Future Challenges of Green Chemistry

origins-current-status-and-future-challenges-green-chemistry-007

PDF Search Title:

Origins, Current Status, and Future Challenges of Green Chemistry

Original File Name Searched:

WEEK_9a___paper.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP