logo

DECARBONIZING SPACE HEATING WITH HEAT PUMPS

PDF Publication Title:

DECARBONIZING SPACE HEATING WITH HEAT PUMPS ( decarbonizing-space-heating-with-heat-pumps )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

● With climate policies consistent with rapid decarbonization and reasonably foreseeable technological progress, air source heat pumps are the low-cost option for typical residential buildings across much of the US by the mid-2030s. Even in the very cold climate of Fargo, North Dakota, the combination of a price on carbon emissions and steady innovation in ASHPs causes ASHPs (with an electric resistance heater as a backup) to be cost competitive with new natural gas furnaces and air conditioners by the 2030s. If the United States commits to the rapid decarbonization of space heating by midcentury, the costs and performance of ASHPs are unlikely to be major barriers to deployment. However, other important barriers may persist, including contractors’ and homeowners’ greater familiarity with incumbent fossil fuel technologies and the slow turnover of the building stock. As a result of these additional barriers, emissions pricing and technological progress alone may not lead to deployment of air source heat pumps in the United States sufficient to achieve deep decarbonization by midcentury. That would likely require additional policy instruments such as technology standards, emissions caps, or mandates. Other technologies can also contribute to decarbonizing space heating, including renewable natural gas, hydrogen produced with carbon capture and storage (CCS) or electrolysis, and centralized or district heating. Each of these options comes with challenges that will require policy support to overcome. This study does not point to a proper balance between ASHPs and other space heating decarbonization technologies. More research is needed to compare different approaches and strategies. In the meantime, our analysis suggests little if any downside to pursuing ambitious policies to promote deployment of ASHPs, prioritizing regions where heat pumps are currently most cost effective. A large-scale increase in ASHP deployments is likely to be an important part of any space heating decarbonization scenario. DECARBONIZING SPACE HEATING WITH AIR SOURCE HEAT PUMPS ENERGYPOLICY.COLUMBIA.EDU | DECEMBER 2019 | 7

PDF Image | DECARBONIZING SPACE HEATING WITH HEAT PUMPS

decarbonizing-space-heating-with-heat-pumps-008

PDF Search Title:

DECARBONIZING SPACE HEATING WITH HEAT PUMPS

Original File Name Searched:

HeatPump-CGEP_Report_010220.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP