logo

DESALINATION OF AQUEOUS SOLUTIONS ZEOLITE MEMBRANES

PDF Publication Title:

DESALINATION OF AQUEOUS SOLUTIONS ZEOLITE MEMBRANES ( desalination-aqueous-solutions-zeolite-membranes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

676 A. Malekpour, A. Samadi-Maybodi and M. R. Sadati CONCLUSIONS The NaA and ZSM-5 zeolite membranes not only can separate water from organic molecules, but are also capable of removing ions from aqueous solutions. The pervaporation studies with synthesized membranes demonstrated that the excellent properties of these membranes make them good candidates for concentration of hazardous wastewaters and also different ionic solutions. For all of the feed solutions, rejection values of more than 98 wt% were obtained. When the temperature is increased, there is an increase in permeation flux and a decrease in the rejection. Desalination experiments for several single-salt solutions confirmed that this method could be used for the processing and concentration of hazardous wastes such as radioactive waste with minimal consumption of energy and without air pollution problems. The results of this work can be used for developing a new method for removal of radionuclide species from heavy water in nuclear reactors. REFERENCES Abdollahi, M., Ashrafizadeh, S. N., Malekpour, A., Preparation of zeolite ZSM-5 membrane by electrophoretic deposition method. Microporous Mesoporous Mater., 106, No. 1-3, 192-200 (2007). Abusafa, A., Yucel, H., Removal of Cs-137 from aqueous solutions using different cationic forms of a natural zeolite: clinoptilolite. Sep. Purif. Technol., 28, No. 2, 103-116 (2002). Ahn, H., Lee, H., Lee, S. B., Lee, Y., Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination, 193, No. 1-3, 244-251 (2006). Bowen, T. C., Li, S. G., Noble, R. D., Falconer, J. L., Driving force for pervaporation through zeolite membranes. J. Membr. Sci., 225, No. 1-2, 165- 176 (2003). Bowen, T. C., Wyss, J. C., Noble, R. D., Falconer, J. L., Measurements of diffusion through a zeolite membrane using isotopic-transient pervaporation. Microporous Mesoporous Mater., 71, No. 1-3, 199-210 (2004). Chmielewski, A. G., Harasimowicz, M., Tyminski, B., Zakrzewska-Trznadel, G., Concentration of low- and medium-level radioactive wastes with three-stage reverse osmosis pilot plant. Separation Science and Technology, 36, No. 5-6, 1117-1127 (2001). Duke, M. C., Mee, S., da Costa, J. C. D., Performance of porous inorganic membranes in non-osmotic desalination. Water Res., 41, No. 17, 3998-4004 (2007). Dyer, A., Aggarwal, S., Removal of fission products from mixed solvents using zeolites .1. Ruthenium removal. J. Radioanal. Nucl. Chem., 198, No. 2, 467-474 (1995). IAEA, T. R. S. N., Application of Membrane Technologies for Liquid RadioactiveWaste Processing. in, International Atomic Energy Agency, Vienna, pp. 431, (2004). Kazemian, H., Ph D. Thesis, University of Isfahan, Isfahan, Place Published (1999). Kumakiri, I., Yamaguchi, T., Nakao, S. I., Application of a zeolite A membrane to Reverse Osmosis Process. J. Chem. Eng. Jpn., 33, No. 1, 333 (2000). Li, L. X., Dong, J. H., Nenoff, T. M., Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis. Sep. Purif. Technol., 53, No. 1, 42-48 (2007). Li, L. X., Dong, J. H., Nenoff, T. M., Lee, R., Reverse osmosis of ionic aqueous solutions on a MFI zeolite membrane. Desalination, 170, No. 3, 309-316 (2004). Malekpour, A., Millani, M. R., Kheirkhah, M., Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. Desalination, 225, No. 1-3, 199-208 (2008). Okamoto, K., Kita, H., Horii, K., Tanaka, K., Kondo, M., Zeolite NaA membrane: Preparation, single- gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind. Eng. Chem. Res., 40, No. 1, 163-175 (2001). Panayotova, M. I., Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Management, 21, No. 7, 671-676 (2001). Pera-Titus, M., Mallada, R., Llorens, J., Cunill, F., Santamaria, J., Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. J. Membr. Sci., 278, No. 1-2, 401-409 (2006). Petruzzelli, D., Pagano, M., Tiravanti, G., Passino, R., Lead removal and recovery from battery wastewaters by natural zeolite clinoptilolite. Solvent Extr. Ion Exch., 17, No. 3, 677-694 (1999). Pina, M. P., Arruebo, M., Felipe, A., Fleta, F., Bernal, M. P ., Coronas, J., Menendez, M., Santamaria, J., A semi-continuous method for the synthesis of NaA zeolite membranes on tubular Brazilian Journal of Chemical Engineering

PDF Image | DESALINATION OF AQUEOUS SOLUTIONS ZEOLITE MEMBRANES

desalination-aqueous-solutions-zeolite-membranes-008

PDF Search Title:

DESALINATION OF AQUEOUS SOLUTIONS ZEOLITE MEMBRANES

Original File Name Searched:

PCZPTXXvZ6pQgGbDbcz9VXd.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP