logo

Recent Advances in Transcritical CO2 (R744) Heat Pump System

PDF Publication Title:

Recent Advances in Transcritical CO2 (R744) Heat Pump System ( recent-advances-transcritical-co2-r744-heat-pump-system )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 033

Energies 2019, 12, 457 33 of 35 81. Pitarch, M.; Navarro-Peris, E.; Gonzalvez, J.; Corberan, J.M. Analysis and optimisation of different two-stage transcritical carbon dioxide cycles for heating applications. Int. J. Refrig. 2016, 70, 235–242. [CrossRef] 82. Cho, H.; Baek, C.; Park, C.; Kim, Y. Performance evaluation of a two-stage CO2 cycle with gas injection in the cooling mode operation. Int. J. Refrig. 2009, 32, 40–46. [CrossRef] 83. Liu, S.; Sun, Z.; Li, H.; Dai, B.; Chen, Y. Thermodynamic analysis of CO2 transcritical two-stage compression refrigeration cycle systems with expanders. HKIE Trans. 2017, 24, 70–77. [CrossRef] 84. Ibsaine, R.; Joffroy, J.-M.; Stouffs, P. Modelling of a new thermal compressor for supercritical CO2 heat pump. Energy 2016, 117, 530–539. [CrossRef] 85. Sumeru, K.; Nasution, H.; Ani, F.N. A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle. Renew. Sustain. Energy Rev. 2012, 16, 4927–4937. [CrossRef] 86. Elbel, S.; Hrnjak, P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int. J. Refrig. 2008, 31, 411–422. [CrossRef] 87. Lee, J.S.; Kim, M.S.; Kim, M.S. Studies on the performance of a CO2 air conditioning system using an ejector as an expansion device. Int. J. Refrig. 2014, 38, 140–152. [CrossRef] 88. Elbel, S.; Lawrence, N. Review of recent developments in advanced ejector technology. Int. J. Refrig. 2016, 62, 1–18. [CrossRef] 89. Lucas, C.; Rusche, H.; Schroeder, A.; Koehler, J. Numerical investigation of a two-phase CO2 ejector. Int. J. Refrig. 2014, 43, 154–166. [CrossRef] 90. Palacz, M.; Smolka, J.; Nowak, A.J.; Banasiak, K.; Hafner, A. Shape optimisation of a two-phase ejector for CO2 refrigeration systems. Int. J. Refrig. 2017, 74, 210–221. [CrossRef] 91. Angielczyk, W.; Bartosiewicz, Y.; Butrymowicz, D.; Seynhaeve, J.-M. 1-D Modeling Of Supersonic Carbon Dioxide Two-Phase Flow Through Ejector Motive Nozzle. In Proceedings of the International Refrigeration and Air Conditioning Conference Purdue e-Pubs, West Lafayette, IN, USA, 12–15 July 2010. 92. Palacz, M.; Haida, M.; Smolka, J.; Nowak, A.J.; Banasiak, K.; Hafner, A. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems. Appl. Therm. Eng. 2017, 115, 160–169. [CrossRef] 93. Zheng, L.X.; Deng, J.Q.; He, Y.; Jiang, P.X. Dynamic model of a transcritical CO2 ejector expansion refrigeration system. Int. J. Refrig. 2015, 60, 247–260. [CrossRef] 94. He, Y.; Deng, J.Q.; Zheng, L.X.; Zhang, Z.X. Thermodynamic study on a new transcritical CO2 ejector expansion refrigeration system with two-stage evaporation and vapor feedback. HVAC&R Res. 2014, 20, 655–664. 95. Bai, T.; Yan, G.; Yu, J. Performance evolution on a dual-temperature CO2 transcritical refrigeration cycle with two cascade ejectors. Appl. Therm. Eng. 2017, 120, 26–35. [CrossRef] 96. Bodys, J.; Smolka, J.; Palacz, M.; Haida, M.; Banasiak, K.; Nowak, A.J.; Hafner, A. Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system. Energy 2016, 117, 620–631. [CrossRef] 97. Smolka, J.; Palacz, M.; Bodys, J.; Banasiak, K.; Fic, A.; Bulinski, Z. Performance comparison of fixed- and controllable-geometry ejectors in a CO2 refrigeration system. Int. J. Refrig. 2016, 65, 172–182. [CrossRef] 98. Liu, F.; Groll, E.A.; Ren, J. Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system. Appl. Therm. Eng. 2016, 98, 1061–1069. [CrossRef] 99. Xu, X.X.; Chen, G.M.; Tang, L.M.; Zhu, Z.J. Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure. Energy 2012, 44, 870–877. [CrossRef] 100. He,Y.;Deng,J.;Yang,F.;Zhang,Z.AnoptimalmultivariablecontrollerfortranscriticalCO2refrigeration cycle with an adjustable ejector. Energy Convers. Manag. 2017, 142, 466–476. [CrossRef] 101. He,Y.;Deng,J.;Zheng,L.;Zhang,Z.PerformanceoptimizationofatranscriticalCO2refrigerationsystem using a controlled ejector. Int. J. Refrig. 2017, 75, 250–261. [CrossRef] 102. Zhang,Z.;Dong,X.;Ren,Z.;Lai,T.;Hou,Y.InfluenceofRefrigerantChargeAmountandEEVOpeningon the Performance of a Transcritical CO2 Heat Pump Water Heater. Energies 2017, 10, 1521. [CrossRef] 103. Song,Y.;Wang,J.;Cao,F.;Shu,P.;Wang,X.Experimentalinvestigationonacapillarytubebasedtranscritical CO2 heat pump system. Appl. Therm. Eng. 2017, 112, 184–189. [CrossRef] 104. Madsen, K.B.; Poulsen, C.S.; Wiesenfarth, M. Study of capillary tubes in a transcritical CO2 refrigeration system. Int. J. Refrig. 2005, 28, 1212–1218. [CrossRef]

PDF Image | Recent Advances in Transcritical CO2 (R744) Heat Pump System

recent-advances-transcritical-co2-r744-heat-pump-system-033

PDF Search Title:

Recent Advances in Transcritical CO2 (R744) Heat Pump System

Original File Name Searched:

energies-12-00457.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP