logo

Recent Advances in Transcritical CO2 (R744) Heat Pump System

PDF Publication Title:

Recent Advances in Transcritical CO2 (R744) Heat Pump System ( recent-advances-transcritical-co2-r744-heat-pump-system )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 034

Energies 2019, 12, 457 34 of 35 105. Hu,J.;Li,M.;Zhao,L.;Xia,B.;Ma,Y.ImprovementandexperimentalresearchofCO2two-rollingpiston expander. Energy 2015, 93, 2199–2207. [CrossRef] 106. Navarro-Esbrı,J.;Cabello,R.;Torrella,E.Experimentalevaluationoftheinternalheatexchangerinfluence on a vapour compression plant energy efficiency working with R22, R123a and R407C. Energy 2005, 30, 621–636. [CrossRef] 107. Shariatzadeh,O.J.;Abolhassani,S.S.;Rahmani,M.;Nejad,M.Z.ComparisonoftranscriticalCO2refrigeration cycle with expander and throttling valve including/excluding internal heat exchanger: Exergy and energy points of view. Appl. Therm. Eng. 2016, 93, 779–787. [CrossRef] 108. Zhang,Z.;Tian,L.;Chen,Y.;Tong,L.Effectofaninternalheatexchangeronperformanceofthetranscritical carbon dioxide refrigeration cycle with an expander. Entropy 2014, 16, 5919–5934. [CrossRef] 109. Sánchez, D.; Patiño, J.; Llopis, R.; Cabello, R.; Torrella, E.; Fuentes, F.V. New positions for an internal heat exchanger in a CO2 supercritical refrigeration plant. Experimental analysis and energetic evaluation. Appl. Therm. Eng. 2014, 63, 129–139. [CrossRef] 110. Pérez-García, V.; Rodríguez-Muñoz, J.L.; Ramírez-Minguela, J.J.; Belman-Flores, J.M.; Méndez-Díaz, S. Comparative analysis of energy improvements in single transcritical cycle in refrigeration mode. Appl. Therm. Eng. 2016, 99, 866–872. [CrossRef] 111. Llopis, R.; Nebot-Andrés, L.; Cabello, R.; Sánchez, D.; Catalán-Gil, J. Experimental evaluation of a CO2 transcritical refrigeration plant with dedicated mechanical subcooling. Int. J. Refrig. 2016, 69, 361–368. [CrossRef] 112. Ituna-Yudonago,J.F.;Belman-Flores,J.M.;Elizalde-Blancas,F.;García-Valladares,O.Numericalinvestigation of CO2 behavior in the internal heat exchanger under variable boundary conditions of the transcritical refrigeration system. Appl. Therm. Eng. 2017, 115, 1063–1078. [CrossRef] 113. Lorentzen,G.;Pettersen,J.Anew,efficientandenvironmentallybenignsystemforcarair-conditioning. Int. J. Refrig. 1993, 16, 4–12. [CrossRef] 114. BeyondHFCsPositionPaperonCO2VendingMachines.Availableonline:http://www.beyondhfcs.org/ (accessed on 28 October 2018). 115. EcoCuteShipmentsExceed2MillionLandmark.Availableonline:http://www.r744.com/articles/2009-11- 26-eco-cute-shipments-exceed-2-million-landmark.php (accessed on 26 November 2009). 116. Available online: http://www.mayekawa.com.au/products/heat-pumps/heatcom-water-heat-source/ (accessed on 6 September 2018). 117. Liu,F.;Zhu,W.;Cai,Y.;Groll,E.A.;Lei,Y.Experimentalperformancestudyonadual-modeCO2heatpump system with thermal storage. Appl. Therm. Eng. 2017, 115, 393–405. [CrossRef] 118. Hu,B.;Wang,X.;Cao,F.;He,Z.;Xing,Z.Experimentalanalysisofanair-sourcetranscriticalCO2heatpump water heater using the hot gas bypass defrosting method. Appl. Therm. Eng. 2014, 71, 528–535. [CrossRef] 119. Calabrese, N.; Mastrullo, R.; Mauro, A.W.; Rovella, P.; Tammaro, M. Performance analysis of a rooftop, air-to-air heat pump working with CO2. Appl. Therm. Eng. 2015, 75, 1046–1054. [CrossRef] 120. Eslami-Nejad, P.; Ouzzane, M.; Aidoun, Z. Modeling of a two-phase CO2-filled vertical borehole for geothermal heat pump applications. Appl. Energy 2014, 114, 611–620. [CrossRef] 121. Wang,J.;Kang,L.;Liu,J.CO2TranscriticalCycleforGroundSourceHeatPump.InProceedingsoftheCSIE ’09, 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA, 31 March–2 April 2009; Volume 2, pp. 213–217. 122. Faria,R.N.;Nunes,R.O.;Koury,R.N.N.;Machado,L.Dynamicmodelingstudyforasolarevaporatorwith expansion valve assembly of a transcritical CO2 heat pump. Int. J. Refrig. 2016, 64, 203–213. [CrossRef] 123. Li,S.;Li,S.;Zhang,X.SimulationresearchofahybridheatsourceheatpumpusingR134a,R744insteadof R22 for domestic water heating in residential buildings. Energy Build. 2015, 91, 57–64. [CrossRef] 124. Cho,H.ComparativestudyontheperformanceandexergyefficiencyofasolarhybridheatpumpusingR22 and R744. Energy 2015, 93, 1267–1276. [CrossRef] 125. Chaichana,C.;Aye,L.;Charters,W.W.S.Naturalworkingfluidsforsolar-boostedheatpumps.Int.J.Refrig. 2003, 26, 637–643. [CrossRef] 126. Jin, Z.; Eikevik, T.M.; Nekså, P.; Hafner, A. A steady and quasi-steady state analysis on the CO2 hybrid ground-coupled heat pumping system. Int. J. Refrig. 2017, 76, 29–41. [CrossRef] 127. Jin, Z.; Eikevik, T.M.; Nekså, P.; Hafner, A. Investigation on CO2 hybrid ground-coupled heat pumping system under warm climate. Int. J. Refrig. 2016, 62, 145–152. [CrossRef]

PDF Image | Recent Advances in Transcritical CO2 (R744) Heat Pump System

recent-advances-transcritical-co2-r744-heat-pump-system-034

PDF Search Title:

Recent Advances in Transcritical CO2 (R744) Heat Pump System

Original File Name Searched:

energies-12-00457.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP