logo

Demonstration of CO2 Conversion to Synthetic Transport Fuel

PDF Publication Title:

Demonstration of CO2 Conversion to Synthetic Transport Fuel ( demonstration-co2-conversion-synthetic-transport-fuel )

Next Page View | Return to Search List

Text from PDF Page: 001

Edited by: Robert J. Farrauto, Columbia University, United States Reviewed by: Edward J. Rode, DNV GL, Norway Xuezhong He, Norwegian University of Science and Technology, Norway *Correspondence: Peter Styring p.styring@sheffield.ac.uk Specialty section: This article was submitted to Carbon Capture, Storage, and Utilization, a section of the journal Frontiers in Energy Research Received: 31 May 2017 Accepted: 19 September 2017 Published: 12 October 2017 Citation: Dowson GRM and Styring P (2017) Demonstration of CO2 Conversion to Synthetic Transport Fuel at Flue Gas Concentrations. Front. Energy Res. 5:26. doi: 10.3389/fenrg.2017.00026 Original research published: 12 October 2017 doi: 10.3389/fenrg.2017.00026 Demonstration of cO2 conversion to synthetic Transport Fuel at Flue gas concentrations George R. M. Dowson1 and Peter Styring1,2* 1 Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom, 2 UK Centre for Carbon Dioxide Utilisation, Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom A mixture of 1- and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO2 utilization step uses dry, dilute carbon dioxide (12% CO2 in nitro- gen) similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for exam- ple, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO2, this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO2 to butanol requires significantly less hydrogen than CO2 to octanes, there is a potentially reduced burden on the so-called hydrogen economy. Keywords: carbon dioxide utilization, butanol, energy storage, carbon avoided, transport fuel, grignard reagent inTrODUcTiOn Carbon capture and storage (CCS) and carbon dioxide utilization (CDU) are two potential approaches to address mitigation of the ever-rising CO2 levels in the atmosphere, which have alarming climate implications (IPCC, 2014). For either approach to be effective in limiting or miti- gating emissions, three key criteria have to be achieved. Sufficient amounts of CO2 must be stored or converted, or otherwise prevented from atmospheric release. The CO2 must be stored or converted Frontiers in Energy Research | www.frontiersin.org 1 October 2017 | Volume 5 | Article 26

PDF Image | Demonstration of CO2 Conversion to Synthetic Transport Fuel

demonstration-co2-conversion-synthetic-transport-fuel-001

PDF Search Title:

Demonstration of CO2 Conversion to Synthetic Transport Fuel

Original File Name Searched:

fenrg-05-00026.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP