Ionic Domains on a Proton Exchange Membrane Electrostatics

PDF Publication Title:

Ionic Domains on a Proton Exchange Membrane Electrostatics ( ionic-domains-proton-exchange-membrane-electrostatics )

Next Page View | Return to Search List

Text from PDF Page: 001

polymers Article Analysis of Ionic Domains on a Proton Exchange Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy Byungrak Son 1 , JaeHyoung Park 2 and Osung Kwon 3,* 􏰁􏰂􏰃 􏰅􏰆􏰇 􏰈􏰉􏰊􏰋􏰌􏰂􏰍 Citation: Son,B.;Park,J.;Kwon,O. Analysis of Ionic Domains on a Proton Exchange Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy. Polymers 2021, 13, 1258. https://doi.org/10.3390/ polym13081258 Academic Editor: Il Kim Received: 19 March 2021 Accepted: 12 April 2021 Published: 13 April 2021 1 2 3 * Correspondence: 11502@gw.kmu.ac.kr; Tel.: +82-53-580-5657 Abstract: Understanding the ionic channel network of proton exchange membranes that dictate fuel cell performance is crucial when developing proton exchange membrane fuel cells. However, it is difficult to characterize this network because of the complicated nanostructure and structure changes that depend on water uptake. Electrostatic force microscopy (EFM) can map surface charge distribution with nano-spatial resolution by measuring the electrostatic force between a vibrating conductive tip and a charged surface under an applied voltage. Herein, the ionic channel network of a proton exchange membrane is analyzed using EFM. A mathematical approximation model of the ionic channel network is derived from the principle of EFM. This model focusses on free charge movement on the membrane based on the force gradient variation between the tip and the membrane surface. To verify the numerical approximation model, the phase lag of dry and wet Nafion is measured with stepwise changes to the bias voltage. Based on the model, the variations in the ionic channel network of Nafion with different amounts of water uptake are analyzed numerically. The mean surface charge density of both membranes, which is related to the ionic channel network, is calculated using the model. The difference between the mean surface charge of the dry and wet membranes is consistent with the variation in their proton conductivity. Keywords: electrostatic force microscopy; proton exchange membrane; numerical approximation model; local dielectric constant; ionic domain; surface charge density; PEMFC 1. Introduction Proton exchange membrane fuel cells are a core technology of green energy devices for several reasons. They do not emit carbon dioxide; they can operate continuously under different environmental conditions without change in performance, and they have a relatively high energy conversion efficiency. However, many limitations must be overcome before they can be adopted, such as high cost, low reliability, and a lack of hydrogen gas infrastructure. Solving the low reliability issue is imperative; however, this is difficult because a proton exchange membrane’s reliability is related to its morphological structure. Proton exchange membranes typically act as proton conductors because of their hetero- geneous structures, which is the combination of a hydrophobic backbone with hydrophilic sulfonic acid groups. Sulfonic acid groups create ionic clusters that have an inverted micel- lar structure and can form a network under hydration. Typically, protons move through the ionic network through vehicle-type and Grotthuss-type mechanisms. In the vehicle-type mechanism, the protons pass into the medium with a solvent. Thus, proton conductivity is related to the solvent diffusion rate. In the Grotthuss-type mechanism, the protons move into the medium by creating and breaking hydrogen bonds without any solvent. In general, these mechanisms are not independent. In the proton exchange membrane, the vehicle-type mechanism is predominant, and the Grotthuss-type mechanism is observed Division of Energy Technology, DGIST, Daegu 42988, Korea; brson@dgist.ac.kr Corporate Research Center, HygenPower Co., Ltd., Daegu 42988, Korea; chris@hygenpower.com Tabula Rasa College, Keimyung University, Daegu 42601, Korea Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Polymers 2021, 13, 1258. https://doi.org/10.3390/polym13081258 https://www.mdpi.com/journal/polymers

PDF Image | Ionic Domains on a Proton Exchange Membrane Electrostatics

PDF Search Title:

Ionic Domains on a Proton Exchange Membrane Electrostatics

Original File Name Searched:

polymers-13-01258-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)