logo

Pathways to Industrial Scale Fuel from CO2 Electrolysis

PDF Publication Title:

Pathways to Industrial Scale Fuel from CO2 Electrolysis ( pathways-industrial-scale-fuel-from-co2-electrolysis )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

could they become competitive? Energy Environ. Sci. 11, 1653–1669. 20. Khezri, B., Fisher, A.C., and Pumera, M. (2017). CO2 reduction: the quest for electrocatalytic materials. J. Mater. Chem. A 5, 8230–8246. 21. Dinh, C.T., Burdyny, T., Kibria, M.G., Seifitokaldani,A.,Gabardo,C.M.,Garcı ́ade Arquer, F.P., Kiani, A., Edwards, J.P., De Luna, P., Bushuyev, O.S., et al. (2018). CO2 electroreduction to ethylene via hydroxide- mediated copper catalysis at an abrupt interface. Science 360, 783–787. 22. Li, Y.C., Zhou, D., Yan, Z., Gonc ̧ alves, R.H., Salvatore, D.A., Berlinguette, C.P., and Mallouk, T.E. (2016). Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153. 23. Zheng, T., Jiang, K., Ta, N., Hu, Y., Zeng, J., Liu, J., and Wang, H. (2019). Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278. 24. Martens, J.A., Bogaerts, A., De Kimpe, N., Jacobs, P.A., Marin, G.B., Rabaey, K., Saeys, M., and Verhelst, S. (2017). The chemical route to a carbon dioxide neutral world. ChemSusChem 10, 1039–1055. 25. Koytsoumpa, E.I., Bergins, C., and Kakaras, E. (2018). The CO2 economy: review of CO2 capture and reuse technologies. J. Supercrit. Fluids 132, 3–16. 26. Mignard, D., Sahibzada, M., Duthie, J.M., and Whittington, H.W. (2003). Methanol synthesis from flue-gas CO2 and renewable electricity: a feasibility study. Int. J. Hydrog. Energy 28, 455–464. 27. Van-Dal, E ́ .S., and Bouallou, C. (2013). Design and simulation of a methanol production plant from CO2 hydrogenation. J. Clean. Prod 57, 38–45. 28. Shell Global. Pearl GTL - overview, https:// www.shell.com/about-us/major-projects/ pearl-gtl/pearl-gtl-an-overview.html. 29. Marlin, D.S., Sarron, E., and Sigurbjo ̈ rnsson, O ́ . Process advantages of direct CO2 to methanol synthesis. Front. Chem. 6. 30. Pe ́ rez-Fortes, M., Scho ̈ neberger, J.C., Boulamanti, A., and Tzimas, E. (2016). Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl. Energy 161, 718–732. 31. Ku ̈ ngas, R., Blennow, P., Heiredal-Clausen, T., Holt, T., Rass-Hansen, J., Primdahl, S., and Hansen, J.B. (2017). eCOs - a commercial CO2 electrolysis system developed by Haldor Topsoe. ECS Trans. 78, 2879–2884. 32. Skrzypek, J., Lachowska, M., and Moroz, H. (1991). Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalysts. Chem. Eng. Sci. 46, 2809–2813. 33. Graaf, G.H., Sijtsema, P.J.J.M., Stamhuis, E.J., and Joosten, G.E.H. (1986). Chemical equilibria in methanol synthesis. Chem. Eng. Sci. 41, 2883–2890. 34. Malik, M.I., Malaibari, Z.O., Atieh, M., and Abussaud, B. (2016). Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem. Eng. Sci. 152, 468–477. 35. Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N., Kibsgaard, J., and Jaramillo, T.F. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113. 36. Yang, D., Zhu, Q., Chen, C., Liu, H., Liu, Z., Zhao, Z., Zhang, X., Liu, S., and Han, B. (2019). Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10, 677. 37. Zhang, W., Qin, Q., Dai, L., Qin, R., Zhao, X., Chen, X., Ou, D., Chen, J., Chuong, T.T., Wu, B., et al. (2018). Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem. Int. Ed. Engl. 57, 9475–9479. 38. Tongwen, X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resour. Conserv. Recycl. 37, 1–22. 39. Mansourizadeh, A., and Ismail, A.F. (2009). Hollow fiber gas–liquid membrane contactors for acid gas capture: a review. J. Hazard. Mater. 171, 38–53. 40. Keith, D.W., Holmes, G., St. Angelo, D.St., and Heidel, K. (2018). A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594. 41. Eisaman, M.D., Alvarado, L., Larner, D., Wang, P., Garg, B., and Littau, K.A. (2011). CO2 separation using bipolar membrane electrodialysis. Energy Environ. Sci. 4, 1319– 1328. 42. Li, F., MacFarlane, D.R., and Zhang, J. (2018). Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10, 6235–6260. 43. Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., et al. (2018). Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5. 44. Dufek, E.J., Lister, T.E., Stone, S.G., and McIlwain, M.E. (2012). Operation of a pressurized system for continuous reduction of CO2. J. Electrochem. Soc. 159, F514–F517. 45. Li, X., Anderson, P., Jhong, H.-R.M., Paster, M., Stubbins, J.F., and Kenis, P.J.A. (2016). Greenhouse gas emissions, energy efficiency, and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer–Tropsch process. Energy Fuels 30, 5980–5989. 46. Santos, D.M.F., Sequeira, C.A.C., and Figueiredo, J.L. (2013). Hydrogen production byalkalinewaterelectrolysis.Qu ́ım.Nova36, 1176–1193. 47. Chen, A., and Lin, B.-L. (2018). A simple framework for quantifying electrochemical CO2 fixation. Joule 2, 594–606. 48. Verma, S., Lu, S., and Kenis, P.J.A. (2019). Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474. 49. Nel Hydrogen. Unlocking the potential of renewables, https://nelhydrogen.com/. 50. Sanz-Pe ́ rez, E.S., Murdock, C.R., Didas, S.A., and Jones, C.W. (2016). Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840– 11876. 51. Global Wind Atlas, https://globalwindatlas. info. 52. Climeworks.Capturing CO2 from air. http:// www.climeworks.com/. 53. Ong, S., Campbell, C., Denholm, P., Margolis, R., and Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States (National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy). 54. Gabardo, C.M., Seifitokaldani, A., Edwards, J.P., Dinh, C.-T., Burdyny, T., Kibria, M.G., O’Brien, C.P., Sargent, E.H., and Sinton, D. (2018). Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539. 55. Kim, B., Hillman, F., Ariyoshi, M., Fujikawa, S., and Kenis, P.J.A. (2016). Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J. Power Sources 312, 192–198. 56. Hara, K., and Sakata, T. (1997). Large current density CO2 reduction under high pressure using gas diffusion electrodes. Bull. Chem. Soc. Jpn. 70, 571–576. 57. Pavagada Solar Park - set to become the world’s largest solar park. https://www. karnataka.com/industry/pavagada-solar-park/. 58. Marshall, C., and News, E.E. (2017). In Switzerland, a giant new machine is sucking carbon directly from the air. https://www. sciencemag.org/news/2017/06/switzerland- giant-new-machine-sucking-carbon- directly-air. 59. Maus, W., and Kraftstoffe, Z. (2019). Energiewende des transports als ein weltweites klimaziel (Springer). 60. Jensen, J.O., Bandur, V., Bjerrum, N.J., Jensen, S.H., Ebbesen, S., Mogensen, M., Tophøj, N., and Yde, L. (2006). Pre- investigation of water electrolysis. Report. PSO-F&U 2006-1-6287. 61. Dow Mitsui Chlor-Alkali Plant (2018). https:// www.chemicals-technology.com/projects/ dowmitsuichloralkali/. 62. ITM Power. (2018). World’s largest hydrogen electrolysis in Shell’s Rhineland refinery. http:// www.itm-power.com/news-item/worlds- largest-hydrogen-electrolysis-in-shells- rhineland-refinery. 63. Burdyny, T., and Smith, W.A. (2019). CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453. 64. Jeanty, P., Scherer, C., Magori, E., Wiesner- Fleischer, K., Hinrichsen, O., and Fleischer, M. (2018). Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Util. 24, 454–462. 1834 Joule 3, 1822–1834, August 21, 2019

PDF Image | Pathways to Industrial Scale Fuel from CO2 Electrolysis

pathways-industrial-scale-fuel-from-co2-electrolysis-013

PDF Search Title:

Pathways to Industrial Scale Fuel from CO2 Electrolysis

Original File Name Searched:

PIIS2542435119303538.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP