PDF Publication Title:
Text from PDF Page: 039
Technical Summary 27 variability are differences in the assumed design, operation and financing of the reference plant to which the capture technology is applied (factors such as plant size, location, efficiency, fuel type, fuel cost, capacity factor and cost of capital). No single set of assumptions applies to all situations or all parts of the world, so a range of costs is given. For the studies listed in Table TS.3, CO2 capture increases the cost of electricity production5 by 35–70% (0.01 to 0.02 US$/kWh) for an NGCC plant, 40–85% (0.02 to 0.03 US$/ kWh) for a supercritical PC plant, and 20–55% (0.01 to 0.02 US$/kWh) for an IGCC plant. Overall, the electricity production costs for fossil fuel plants with capture (excluding CO2 transport and storage costs) ranges from 0.04–0.09 US$/ kWh, as compared to 0.03–0.06 US$/kWh for similar plants without capture. In most studies to date, NGCC systems have typically been found to have lower electricity production costs than new PC and IGCC plants (with or without capture) in the case of large base-load plants with high capacity factors (75% or more) and natural gas prices between 2.6 and 4.4 US$ GJ-1 over the life of the plant. However, in the case of higher gas prices and/or lower capacity factors, NGCC plants often have higher electricity production costs than coal-based plants, with or without capture. Recent studies also found that IGCC plants were on average slightly more costly without capture and slightly less costly with capture than similarly- sized PC plants. However, the difference in cost between PC and IGCC plants with or without CO2 capture can vary significantly according to coal type and other local factors, such as the cost of capital for each plant type. Since full-scale NGCC, PC and IGCC systems have not yet been built with CCS, the absolute or relative costs of these systems cannot be stated with a high degree of confidence at this time. The costs of retrofitting existing power plants with CO2 capture have not been extensively studied. A limited number of reports indicate that retrofitting an amine scrubber to an existing plant results in greater efficiency loss and higher costs than those shown in Table TS.3. Limited studies also indicate that a more cost-effective option is to combine a capture system retrofit with rebuilding the boiler and turbine to increase plant efficiency and output. For some existing plants, studies indicate that similar benefits could be achieved by repowering with an IGCC system that includes CO2 capture technology. The feasibility and cost of all these options is highly dependent on site-specific factors, including the size, age and efficiency of the plant, and the availability of additional space. 5 The cost of electricity production should not be confused with the price of electricity to customers. CO2 capture: risks, energy and the environment The monitoring, risk and legal implications of CO2 capture systems do not appear to present fundamentally new challenges, as they are all elements of regular health, safety and environmental control practices in industry. However, CO2 capture systems require significant amounts of energy for their operation. This reduces net plant efficiency, so power plants require more fuel to generate each kilowatt-hour of electricity produced. Based on a review of the literature, the increase in fuel consumption per kWh for plants capturing 90% CO2 using best current technology ranges from 24–40% for new supercritical PC plants, 11–22% for NGCC plants, and 14–25% for coal-based IGCC systems compared to similar plants without CCS. The increased fuel requirement results in an increase in most other environmental emissions per kWh generated relative to new state-of-the-art plants without CO2 capture and, in the case of coal, proportionally larger amounts of solid wastes. In addition, there is an increase in the consumption of chemicals such as ammonia and limestone used by PC plants for nitrogen oxide and sulphur dioxide emissions control. Advanced plant designs that further reduce CCS energy requirements will also reduce overall environmental impacts as well as cost. Compared to many older existing plants, more efficient new or rebuilt plants with CCS may actually yield net reductions in plant- level environmental emissions. Costs of CO2 capture The estimated costs of CO2 capture at large power plants are based on engineering design studies of technologies in commercial use today (though often in different applications and/or at smaller scales than those assumed in the literature), as well as on design studies for concepts currently in the research and development (R&D) stage. Table TS.3 summarizes the results for new supercritical PC, NGCC and IGCC plants based on current technology with and without CO2 capture. Capture systems for all three designs reduce CO2 emissions per kWh by approximately 80–90%, taking into account the energy requirements for capture. All data for PC and IGCC plants in Table TS.3 are for bituminous coals only. The capture costs include the cost of compressing CO2 (typically to about 11–14 MPa) but do not include the additional costs of CO2 transport and storage (see Sections 4–7). The cost ranges for each of the three systems reflect differences in the technical, economic and operating assumptions employed in different studies. While some differences in reported costs can be attributed to differences in the design of CO2 capture systems, the major sources ofPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)