logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 042

30 Technical Summary In some situations or locations, transport of CO2 by ship may be economically more attractive, particularly when the CO2 has to be moved over large distances or overseas. Liquefied petroleum gases (LPG, principally propane and butane) are transported on a large commercial scale by marine tankers. CO2 can be transported by ship in much the same way (typically at 0.7 MPa pressure), but this currently takes place on a small scale because of limited demand. The properties of liquefied CO2 are similar to those of LPG, and the technology could be scaled up to large CO2 carriers if a demand for such systems were to materialize. and the impact would probably not be more severe than for natural gas accidents. In marine transportation, hydrocarbon gas tankers are potentially dangerous, but the recognized hazard has led to standards for design, construction and operation, and serious incidents are rare. Cost of CO2 transport Road and rail tankers also are technically feasible options. These systems transport CO2 at a temperature of -20oC and at 2 MPa pressure. However, they are uneconomical compared to pipelines and ships, except on a very small scale, and are unlikely to be relevant to large-scale CCS. Costs have been estimated for both pipeline and marine transportation of CO2. In every case the costs depend strongly on the distance and the quantity transported. In the case of pipelines, the costs depend on whether the pipeline is onshore or offshore, whether the area is heavily congested, and whether there are mountains, large rivers, or frozen ground on the route. All these factors could double the cost per unit length, with even larger increases for pipelines in populated areas. Any additional costs for recompression (booster pump stations) that may be needed for longer pipelines would be counted as part of transport costs. Such costs are relatively small and not included in the estimates presented here. Environment, safety and risk aspects Just as there are standards for natural gas admitted to pipelines, so minimum standards for ‘pipeline quality’ CO2 should emerge as the CO2 pipeline infrastructure develops further. Current standards, developed largely in the context of EOR applications, are not necessarily identical to what would be required for CCS. A low-nitrogen content is important for EOR, but would not be so significant for CCS. However, a CO2 pipeline through populated areas might need a lower specified maximum H2S content. Pipeline transport of CO2 through populated areas also requires detailed route selection, over-pressure protection, leak detection and other design factors. However, no major obstacles to pipeline design for CCS are foreseen. Figure TS.5 shows the cost of pipeline transport for a nominal distance of 250 km. This is typically 1–8 US$/tCO2 (4–30 US$/tC). The figure also shows how pipeline cost depends on the CO2 mass flow rate. Steel cost accounts for a significant fraction of the cost of a pipeline, so fluctuations in such cost (such as the doubling in the years from 2003 to 2005) could affect overall pipeline economics. CO2 could leak to the atmosphere during transport, although leakage losses from pipelines are very small. Dry (moisture-free) CO2 is not corrosive to the carbon-manganese steels customarily used for pipelines, even if the CO2 contains contaminants such as oxygen, hydrogen sulphide, and sulphur or nitrogen oxides. Moisture-laden CO2, on the other hand, is highly corrosive, so a CO2 pipeline in this case would have to be made from a corrosion-resistant alloy, or be internally clad with an alloy or a continuous polymer coating. Some pipelines are made from corrosion-resistant alloys, although the cost of materials is several times larger than carbon- manganese steels. For ships, the total loss to the atmosphere is between 3 and 4% per 1000 km, counting both boil-off and the exhaust from ship engines. Boil-off could be reduced by capture and liquefaction, and recapture would reduce the loss to 1 to 2% per 1000 km. Accidents can also occur. In the case of existing CO2 pipelines, which are mostly in areas of low population density, there have been fewer than one reported incident per year (0.0003 per km-year) and no injuries or fatalities. This is consistent with experience with hydrocarbon pipelines, Figure TS.5. Transport costs for onshore pipelines and offshore Figuur 4.5 In ship transport, the tanker volume and the characteristics of the loading and unloading systems are some of the key factors determining the overall transport cost. 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 5 10 15 20 25 30 35 Mass flow rate (MtCO2 yr-1) offshore onshore pipelines, in US$ per tCO2 per 250 km as a function of the CO2 mass flow rate. The graph shows high estimates (dotted lines) and low estimates (solid lines). Costs (US$/tCO2/250km)

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-042

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP