logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 043

Figure TS.6. Costs, plotted as US$/tCO transported against 2 sources such as natural gas processing. Much of the CO2 distance, for onshore pipelines, offshore pipelines and ship transport. Figuur 4.6 -1 injected for EOR is produced with the oil, from which it is Pipeline costs are given for a mass flow of 6 MtCO2 yr . Ship costs include intermediate storage facilities, harbour fees, fuel costs, and loading and unloading activities. Costs include also additional costs for liquefaction compared to compression. separated and then reinjected. At the end of the oil recovery, The costs associated with CO2 compression and liquefaction are accounted for in the capture costs presented earlier. Figure TS.6 compares pipeline and marine transportation costs, and shows the break-even distance. If the marine option is available, it is typically cheaper than pipelines for distances greater than approximately 1000 km and for amounts smaller than a few million tonnes of CO2 per year. In ocean storage the most suitable transport system depends on the injection method: from a stationary floating vessel, a moving ship, or a pipeline from shore. 5. Geological storage This section examines three types of geological formations that have received extensive consideration for the geological storage of CO2: oil and gas reservoirs, deep saline formations and unminable coal beds (Figure TS.7). In each case, geological storage of CO2 is accomplished by injecting it in dense form into a rock formation below the earth’s surface. Porous rock formations that hold or (as in the case of depleted oil and gas reservoirs) have previously held fluids, such as natural gas, oil or brines, are potential candidates for CO2 storage. Suitable storage formations can occur in both onshore and offshore sedimentary basins (natural large-scale depressions in the earth’s crust that are filled with sediments). Coal beds also may be used for storage of CO2 (see Figure TS.7) where it is unlikely that the coal will later be mined and provided that permeability is sufficient. The option of storing CO2 in coal beds and enhancing methane production is still in the demonstration phase (see Table TS.1). Storage technology and mechanisms Technical Summary 31 Existing CO2 storage projects Geological storage of CO2 is ongoing in three industrial- scale projects (projects in the order of 1 MtCO2 yr-1 or more): the Sleipner project in the North Sea, the Weyburn project in Canada and the In Salah project in Algeria. About 3–4 MtCO2 that would otherwise be released to the atmosphere is captured and stored annually in geological formations. Additional projects are listed in Table TS.5. offshore pipeline onshore pipeline ship costs In addition to the CCS projects currently in place, 30 MtCO2 is injected annually for EOR, mostly in Texas, USA, where EOR commenced in the early 1970s. Most of this CO2 is obtained from natural CO2 reservoirs found in western regions of the US, with some coming from anthropogenic the CO can be retained for the purpose of climate change 2 mitigation, rather than vented to the atmosphere. This is planned for the Weyburn project. The injection of CO2 in deep geological formations involves many of the same technologies that have been developed in the oil and gas exploration and production industry. Well-drilling technology, injection technology, computer simulation of storage reservoir dynamics and monitoring methods from existing applications are being developed further for design and operation of geological storage. Other underground injection practices also provide relevant operational experience. In particular, natural gas storage, the deep injection of liquid wastes, and acid gas disposal (mixtures of CO2 and H2S) have been conducted in Canada and the U.S. since 1990, also at the megatonne scale. CO2 storage in hydrocarbon reservoirs or deep saline formations is generally expected to take place at depths below 800 m, where the ambient pressures and temperatures will usually result in CO2 being in a liquid or supercritical state. Under these conditions, the density of CO2 will range from 50 to 80% of the density of water. This is close to the density of some crude oils, resulting in buoyant forces that tend to drive CO2 upwards. Consequently, a well-sealed cap rock over the selected storage reservoir is important to ensure that CO2 remains trapped underground. When injected underground, the CO2 compresses and fills the pore space by partially displacing the fluids that are already present (the ‘in situ fluids’). In oil and gas reservoirs, the displacement of in situ fluids by injected CO2 can result in most of the pore volume being available for CO2 storage. In saline formations, estimates of potential storage volume are lower, ranging from as low as a few percent to over 30% of the total rock volume. Transport costs (US$/tCO2)

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-043

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP