CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 066

54 1.1 Background to the report IPCC Special Report on Carbon dioxide Capture and Storage stored away from the atmosphere for a very long time (IPCC, 2001a). In order to have a significant effect on atmospheric concentrations of CO2, storage reservoirs would have to be large relative to annual emissions. 1.1.2 Why a special report on CO2 capture and storage? The capture and storage of carbon dioxide is a technically feasible method of making deep reductions in CO2 emissions from sources such as those mentioned above. Although it can be implemented mainly by applying known technology developed for other purposes, its potential role in tackling climate change was not recognized as early as some other mitigation options. Indeed, the topic received little attention in IPCC’s Second and Third Assessment Reports (IPCC 1996a, 2001b) – the latter contained a three-page review of technological progress, and an overview of costs and the environmental risks of applying such technology. In recent years, the technical literature on this field has expanded rapidly. Recognizing the need for a broad approach to assessing mitigation options, the potential importance of issues relating to CO2 capture and storage and the extensive literature on other options (due to their longer history), IPCC decided to undertake a thorough assessment of CO2 capture and storage. For these reasons it was thought appropriate to prepare a Special Report on the subject. This would constitute a source of information of comparable nature to the information available on other, more established mitigation options. In response to the invitation from the 7th Conference of the Parties to the UNFCCC in Marrakech4, the IPCC plenary meeting in April 2002 decided to launch work on CO2 capture and storage. 1.1.3 Preparations for this report In preparation for this work, the 2002 Plenary decided that IPCC should arrange a Workshop under the auspices of Working Group III, with inputs from Working Groups I and II, to recommend how to proceed. This workshop took place in Regina, Canada, in November 2002 (IPCC, 2002). Three options were considered at the workshop: the production of a Technical Report, a Special Report, or the postponement of any action until the Fourth Assessment Report. After extensive discussion, the Workshop decided to advise IPCC to produce a Special Report on CO2 capture and storage. At IPCC’s Plenary Meeting in February 2003, the Panel acknowledged the importance of issues relating to CO2 capture and storage and decided that a Special Report would be the most appropriate way of assessing the technical, scientific and socio-economic implications of capturing anthropogenic CO2 and storing it in natural reservoirs. The Panel duly gave approval for work to begin on such a report with 2005 as the target date for publication. 4 This draft decision called on IPCC to prepare a ‘technical paper on geological carbon storage technologies’. IPCC’s Third Assessment Report stated ‘there is new and stronger evidence that most of the warming observed over the past 50 years is attributable to human activities’. It went on to point out that ‘human influences will continue to change atmospheric composition throughout the 21st century’ (IPCC, 2001c). Carbon dioxide (CO2) is the greenhouse gas that makes the largest contribution from human activities. It is released into the atmosphere by: the combustion of fossil fuels such as coal, oil or natural gas, and renewable fuels like biomass; by the burning of, for example, forests during land clearance; and from certain industrial and resource extraction processes. As a result ‘emissions of CO2 due to fossil fuel burning are virtually certain to be the dominant influence on the trends in atmospheric CO2 concentration during the 21st century’ and ‘global average temperatures and sea level are projected to rise under all ... scenarios’ (IPCC, 2001c). The UN Framework Convention on Climate Change (UNFCCC), which has been ratified by 189 nations and has now gone into force, asserts that the world should achieve an atmospheric concentration of greenhouse gases (GHGs) that would prevent ‘dangerous anthropogenic interference with the climate system’ (UNFCCC, 1992), although the specific level of atmospheric concentrations has not yet been quantified. Technological options for reducing anthropogenic emissions1 of CO2 include (1) reducing the use of fossil fuels (2) substituting less carbon-intensive fossil fuels for more carbon-intensive fuels (3) replacing fossil fuel technologies with near-zero-carbon alternatives and (4) enhancing the absorption of atmospheric CO2 by natural systems. In this report, the Intergovernmental Panel on Climate Change (IPCC) explores an additional option: Carbon dioxide Capture and Storage (CCS)2. This report will analyze the current state of knowledge in order to understand the technical, economic and policy dimensions of this climate change mitigation option and make it possible to consider it in context with other options. 1.1.1 What is CO2 capture and storage? CO2 capture and storage involves capturing the CO2 arising from the combustion of fossil fuels, as in power generation, or from the preparation of fossil fuels, as in natural-gas processing. It can also be applied to the combustion of biomass-based fuels and in certain industrial processes, such as the production of hydrogen, ammonia, iron and steel, or cement. Capturing CO2 involves separating the CO2 from some other gases3. The CO2 must then be transported to a storage site where it will be 1 In this report, the term ‘emissions’ is taken to refer to emissions from anthropogenic, rather than natural, sources. 2 CO2 capture and storage is sometimes referred to as carbon sequestration. In this report, the term ‘sequestration’ is reserved for the enhancement of natural sinks of CO2, a mitigation option which is not examined in this report but in IPCC 2000b. The decision of the 2002 Plenary Meeting required the report to cover the following issues: 3 For example, in the flue gas stream of a power plant, the other gases are mainly nitrogen and water vapour.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)