CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 069

Chapter 1: Introduction 57 CO2 emissions as current rates. Adding together all of the CO2 emissions projected for the 21st century, the cumulative totals lie in the range of 3,480 to 8,050 GtCO2 (950 to 2,200 GtC) depending on the selected scenario (IPCC, 2001e). CO2 emissions = Population x GDP Population x Energy GDP x Emissions Energy It should be noted that there is potential for confusion about the term ‘leakage’ since this is widely used in the climate change literature in a spatial sense to refer to the displacement of emissions from one source to another. This report does not discuss leakage of this kind but it does look at the unintended release of CO2 from storage (which may also be termed leakage). The reader is advised to be aware of the possible ambiguity in the use of the term leakage and to have regard to the context where this word is used in order to clarify the meaning. This shows that the level of CO2 emissions can be understood to depend directly on the size of the human population, on the level of global wealth, on the energy intensity of the global economy, and on the emissions arising from the production and use of energy. At present, the population continues to rise and average energy use is also rising, whilst the amount of energy required per unit of GDP is falling in many countries, but only slowly (IPCC, 2001d). So achieving deep reductions in emissions will, all other aspects remaining constant, require major changes in the third and fourth factors in this equation, the emissions from energy technology. Meeting the challenge of the UNFCCC’s goal will therefore require sharp falls in emissions from energy technology. 1.3 Options for mitigating climate change As mentioned above, the UN Framework Convention on Climate Change calls for the stabilization of the atmospheric concentration of GHGs but, at present, there is no agreement on what the specific level should be. However, it can be recognized that stabilization of concentrations will only occur once the rate of addition of GHGs to the atmosphere equals the rate at which natural systems can remove them – in other words, when the rate of anthropogenic emissions is balanced by the rate of uptake by natural processes such as atmospheric reactions, net transfer to the oceans, or uptake by the biosphere. A wide variety of technological options have the potential to reduce net CO2 emissions and/or CO2 atmospheric concentrations, as will be discussed below, and there may be further options developed in the future. The targets for emission reduction will influence the extent to which each technique is used. The extent of use will also depend on factors such as cost, capacity, environmental impact, the rate at which the technology can be introduced, and social factors such as public acceptance. 1.3.1 Improve energy efficiency Reductions in fossil fuel consumption can be achieved by improving the efficiency of energy conversion, transport and end-use, including enhancing less energy-intensive economic activities. Energy conversion efficiencies have been increased in the production of electricity, for example by improved turbines; combined heating, cooling and electric- power generation systems reduce CO2 emissions further still. Technological improvements have achieved gains of factors of 2 to 4 in the energy consumption of vehicles, of lighting and many appliances since 1970; further improvements and wider application are expected (IPCC, 2001a). Further significant gains in both demand-side and supply-side efficiency can be achieved in the near term and will continue to slow the growth in emissions into the future; however, on their own, efficiency gains are unlikely to be sufficient, or economically feasible, to achieve deep reductions in emissions of GHGs (IPCC, 2001a). 1.3.2 Switch to less carbon-intensive fossil fuels Switching from high-carbon to low-carbon fuels can be cost- effective today where suitable supplies of natural gas are available. A typical emission reduction is 420 kg CO2 MWh–1 for the change from coal to gas in electricity generation; this is about 50% (IPCC, 1996b). If coupled with the introduction of the combined production of heat, cooling and electric power, the reduction in emissions would be even greater. This would In general, the lower the stabilization target and the higher the level of baseline emissions, the larger the required reduction in emissions below the baseline, and the earlier that it must occur. For example, stabilization at 450 ppmv CO2 would require emissions to be reduced earlier than stabilization at 650 ppmv, with very rapid emission reductions over the next 20 to 30 years (IPCC, 2000a); this could require the employment of all cost-effective potential mitigation options (IPCC, 2001a). Another conclusion, no less relevant than the previous one, is that the range of baseline scenarios tells us that future economic development policies may impact greenhouse gas emissions as strongly as policies and technologies especially developed to address climate change. Some have argued that climate change is more an issue of economic development, for both developed and developing countries, than it is an environmental issue (Moomaw et al., 1999). The Third Assessment Report (IPCC, 2001a) shows that, in many of the models that IPCC considered, achieving stabilization at a level of 550 ppmv would require global emissions to be reduced by 7–70% by 2100 (depending upon the stabilization profile) compared to the level of emissions in 2001. If the target were to be lower (450 ppmv), even deeper reductions (55–90%) would be required. For the purposes of this discussion, we will use the term ‘deep reductions’ to imply net reductions of 80% or more compared with what would otherwise be emitted by an individual power plant or industrial facility. In any particular scenario, it may be helpful to consider the major factors influencing CO2 emissions from the supply and use of energy using the following simple but useful identity (after Kaya, 1995):

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)