PDF Publication Title:
Text from PDF Page: 078
66 IPCC Special Report on Carbon dioxide Capture and Storage small compared to the flows into those storage reservoirs. The amount in storage at a particular time is determined by the capacity of the reservoir and the past history of additions to, and releases from, the reservoir. The change in stocks of CO2 in a particular storage reservoir over a specified time is determined by the current stock and the relative rates at which the gas is added and released; in the case of ocean storage, the level of CO2 in the atmosphere will also influence the net rate of release15. As long as the input storage rate exceeds the release rate, CO2 will accumulate in the reservoir, and a certain amount will be stored away from the atmosphere. Analyses presented in this report conclude that the time frames for different storage fossil fuel CO2 through the global carbon cycle. It is difficult to provide a simple picture of the fraction retained because of the dynamic nature of this process. Typically, however, 99% is stored for decades to centuries, although the average lifetime will be towards the lower end of that range. The terrestrial biosphere at present is a net sink for carbon dioxide but some current biological sinks are becoming net sources as temperatures rise. The annual storage flows and total carbon storage capacity can be enhanced by forestry and soil management practices. Terrestrial sequestration is not explicitly considered in this report but it is covered in IPCC, 2000b. provide a fraction retained of nearly 100% for exceptionally long times in carbonate rock. However, this process has not yet been demonstrated on a significant scale for long periods and the energy balance may not be favourable. This is discussed in Chapter 7. options cover a wide range: • The terrestrial biosphere stores and releases both natural and • Converting carbon dioxide into other, possibly useful, chemicals may be limited by the energetics of such reactions, the quantities of chemicals produced and their effective lifetimes. In most cases this would result in very small net storage of CO2. Ninety-nine per cent of the carbon will be retained in the product for periods in the order of weeks to months, depending on the product. This is discussed in Chapter 7. • Oceans hold the largest amount of mobile CO2. They absorb and release natural and fossil fuel CO2 according to the dynamics of the global carbon cycle, and this process results in changes in ocean chemistry. The fraction retained by ocean storage at 3,000 m depth could be around 85% after 500 years. However, this process has not yet been demonstrated at a significant scale for long periods. Injection at shallower depths would result in shorter retention times. Chapter 6 discusses the storage capacity and fractions retained for ocean storage. In deciding whether a particular storage option meets mitigation goals, it will be important to know both the net storage capacity and the fraction retained over time. Alternative ways to frame the question are to ask ‘How long is enough to achieve a stated policy goal?’ or ‘What is the benefit of isolating a specific amount of CO2 away from the atmosphere for a hundred or a million years?’ Understanding the effectiveness of storage involves the consideration of factors such as the maximum atmospheric concentration of CO2 that is set as a policy goal, the timing of that maximum, the anticipated duration of the fossil fuel era, and available means of controlling the CO2 concentration in the event of significant future releases. • In geological storage, a picture of the likely fraction retained may be gained from the observation of natural systems where CO2 has been in natural geological reservoirs for millions of years. It may be possible to engineer storage reservoirs that have comparable performance. The fraction retained in appropriately selected and managed geological reservoirs is likely to exceed 99% over 1000 years. However, sudden gas releases from geological reservoirs could be triggered by failure of the storage seal or the injection well, earthquakes or volcanic eruptions, or if the reservoir were accidentally punctured by subsequent drilling activity. Such releases might have significant local effects. Experience with engineered natural-gas-storage facilities and natural CO2 reservoirs may be relevant to understanding whether such releases might occur. The storage capacity and fraction retained for the various geological storage options are discussed in Chapter 5. One may assess the implications of possible future releases of CO2 from storage using simulations similar to those developed for generating greenhouse gas stabilization trajectories16. A framework of this kind can treat releases from storage as delayed emissions. Some authors examined various ways of assessing unintended releases from storage and found that a delay in emissions in the order of a thousand years may be almost as effective as perfect storage (IPCC, 2001b; Herzog et al., 2003; Ha-Duong and Keith, 2003)17. This is true if marginal carbon prices remain constant or if there is a backstop technology that can cap abatement costs in the not too distant 1.6.4 How long does the CO2 need to remain in storage? The issue for policy is whether CO2 will be held in a particular class of reservoirs long enough so that it will not increase the difficulty of meeting future targets for CO2 concentration in the atmosphere. For example, if 99% of the CO2 is stored for periods that exceed the projected time span for the use of fossil fuels, this should not to lead to concentrations higher than those specified by the policy goal. • Mineral carbonation through chemical reactions would 16 Such a framework attempts to account for the intergenerational trade- offs between climate impact and the cost of mitigation and aims to select an emissions trajectory (modified by mitigation measures) that maximizes overall welfare (Wigley et al., 1996; IPCC, 2001a). For example, Herzog et al. (2003) calculated the effectiveness of an ocean storage project relative to permanent storage using economic arguments; given a constant carbon price, the project would be 97% effective at a 3% discount rate; if the price of carbon were to increase at the same rate as the discount rate for 100 years and remain constant thereafter, the project would be 80% effective; for a similar rate of increase but over a 500 year period, effectiveness would be 45%. 17 15 For further discussion of this point, see Chapter 6.PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |