CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 081

Chapter 1: Introduction 69 credits. Where the project is located in another Annex I country, it may be possible to fund this through Joint Implementation (JI). The Clean Development Mechanism (CDM) may provide opportunities for developing countries to acquire technology for emission reduction purposes, with some of the costs being borne by external funders who can claim credit for these investments. At the time of writing, it is uncertain whether CCS projects would be covered by the CDM and there are many issues to be considered. The current low value of Certified Emission Reductions is a major barrier to such projects at present (IEA GHG, 2004a). It is possible that some CO2-EOR projects could be more attractive, especially if the project would also delay the abandonment of a field or prevent job losses. The issue of the longevity of storage has still to be resolved but the longer retention time for geological formations may make it easier for CCS to be accepted than was the case for natural sinks. A number of countries have the potential to host CCS projects involving geological storage under CDM (IEA GHG, 2004a) but the true potential can only be assessed when the underground storage resources have been mapped. The above discussion shows that there are many questions to be answered about the financing of such options, not least if proposed as a project under the flexible mechanisms of the Kyoto Protocol. 1.6.7 Societal requirements Even if CO2 capture and storage is cost-effective and can be recognized as potentially fulfilling a useful role in energy supply for a climate-constrained world, there will be other aspects that must be addressed before it can be widely used. For example, what are the legal issues that face this technology? What framework needs to be put in place for long-term regulation? Will CO2 capture and storage gain public acceptance? 1.6.7.1 Legal issues concerning CCS Some legal questions about CCS can be identified and answered relatively easily; for example, the legal issues relating to the process of capturing CO2 seem likely to be similar to those facing any large chemical plant. Transporting CO2 through pipelines can probably be managed under current regulatory regimes for domestic and international pipelines. The extent to which the CO2 is contaminated with other substances, such as compounds of sulphur (see Chapter 4), might alter its classification to that of a hazardous substance, subjecting it to more restrictive regulation. However, the storage of carbon dioxide is likely to pose new legal challenges. What licensing procedure will be required by national authorities for storage in underground reservoirs onshore? It seems likely that factors to be considered will include containment criteria, geological stability, potential hazard, the possibility of interference with other underground or surface activities and agreement on sub-surface property rights, and controls on drilling or mining nearby. of the Sea22, the London Convention and regional agreements such as the OSPAR Convention23 will affect storage of CO2 under the sea but the precise implications have yet to be worked out. This is discussed further in Chapter 5. Ocean storage raises a similar set of questions about the Law of the Sea and the London Convention but the different nature of the activity may generate different responses. These are discussed in Chapter 6. A further class of legal issues concerns the responsibility for stored carbon dioxide. This is relevant because the CO2 will have been the subject of a contract for storage, or a contract for emissions reduction, and/or because of the possibility of unintended release. Should society expect private companies to be responsible over centuries for the storage of CO2? A judgement may have to be made about a reasonable balance between the costs and benefits to current and to future generations. In the case of the very long-term storage of nuclear waste, states have taken on the responsibility for managing storage; the companies that generate the waste, and make a profit from using the nuclear material, pay a fee to the government to take responsibility. In other fields, the deep-well injection of hazardous materials is sometimes the responsibility of governments and sometimes the responsibility of the companies concerned under a licensing system (IEA GHG, 2004b). Rules about insurance and about liability (if there were to be a release of CO2) will need to be developed so that, even if something happens in the distant future, when the company that stored it is no longer in business, there will be a means of ensuring another organization is capable and willing to accept responsibility. The information on legal issues presented in this report reflects the best understanding at the time of writing but should not be taken as definitive as the issues have not been tested. Only a few studies have been carried out of public attitudes towards CCS. Such research presents challenges because the public is not familiar with the technology, and may only have a limited understanding of climate change and the possibilities for mitigation. As a result the studies completed to date have had to provide information on CCS (and on climate change) to their subjects. This tends to limit the scale of the study which can be carried out. This issue is examined in more detail in Chapter 5. Storage in geological formations below the sea floor will be controlled by different rules from storage under land. The Law When a CCS project is proposed, the public and governments will want to be satisfied that storage of carbon dioxide is so 1.6.7.2 Public acceptance What form of public consultation will be needed before approval of a CCS project? Will the public compare CCS with other activities below ground such as the underground storage of natural gas or will CCS be compared to nuclear waste disposal? Will they have different concerns about different forms of storage, such as geological or ocean storage of CO2? Will the general attitude towards building pipelines affect the development of CO2 pipelines? These and other issues are the subject of current discussion and investigation. 22 The full text of these conventions is accessible on the Internet. 23 Issues of interest for this report are at the time of writing being discussed in the OSPAR convention that regulates the uses of the North East Atlantic.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)