PDF Publication Title:
Text from PDF Page: 146
134 IPCC Special Report on Carbon dioxide Capture and Storage is commercially ready, however, no IGCC plant incorporating CO2 capture has yet been built. With current technology, average estimates of the energy penalties and the impact of increased fuel use for CO2 removal are compared with other capture systems in Figures 3.6 and 3.7 and show the prospective potential of IGCC options. The data in Figures 3.6 and 3.7 also show that some IGCC options may be different from others (i.e., slurry fed and quench cooled versus dry feed and syngas cooling) and their relative merits in terms of the capital cost of plant and the delivered cost of power are discussed in Section 3.7. 3.5.2.7 Hydrogen from coal with CO2 capture Relative to intensively studied coal IGCC technology with CO2 capture, there are few studies in the public domain on making H2 from coal via gasification with CO2 capture (NRC, 2004; Parsons 2002a, b; Gray and Tomlinson, 2003; Chiesa et al., 2005; Kreutz et al., 2005), even though this H2 technology is well established commercially, as noted above. With commercial technology, H2 with CO2 capture can be produced via coal gasification in a system similar to a coal IGCC plant with CO2 capture. In line with the design recommendations for coal IGCC plants described above (IEA GHG, 2003), what follows is the description from a design study of a coal H2 system that produces, using best available technology, 1070 MWt of H2 from high-sulphur (3.4%) bituminous coal (Chiesa et al., 2005; Kreutz et al., 2005). In the base case design, syngas is produced in an entrained flow quench gasifier operated at 7 MPa. The syngas is cooled, cleaned of particulate matter, and shifted (to primarily H2 and CO2) in sour water gas shift reactors. After further cooling, H2S is removed from the syngas using a physical solvent (Selexol). CO2 is then removed from the syngas, again using Selexol. After being stripped from the solvents, the H2S is converted to elemental S in a Claus unit and a plant provides tail gas clean-up to remove residual sulphur emissions; and the CO2 is either vented or dried and compressed to 150 atm for pipeline transport and underground storage. High purity H2 is extracted at 6 MPa from the H2-rich syngas via a pressure swing adsorption (PSA) unit. The PSA purge gas is compressed and burned in a conventional gas turbine combined cycle, generating 78 MWe and 39 MWe of electricity in excess of onsite electricity needs in the without and with CO2 capture cases, respectively. For this base case analysis, the effective efficiency of H2 manufacture was estimated to be 64% with CO2 vented and 61% with CO2 captured, while the corresponding emission rates are 16.9 kgCO2 and 1.4 kgCO2/ kgH2, respectively. For the capture case, the CO2 removal rate was 14.8 kgCO2/kgH2. Various alternative system configurations were explored. It was found that there are no thermodynamic or cost advantages from increasing the electricity/H2 output ratio, so this ratio would tend to be determined by relative market demands for electricity and H2. One potentially significant option for reducing the cost of H2 with CO2 capture to about the same level as with CO2 vented involves H2S/CO2 co-capture in a single Selexol unit, as discussed above. can be made from syngas via gasification of coal or other low H/ C ratio feedstocks. Potential products include synthetic natural gas, Fischer-Tropsch diesel/gasoline, dimethyl ether, methanol and gasoline from methanol via the Mobil process. A byproduct is typically a stream of relatively pure CO2 that can be captured and stored. 3.5.2.8 Carbon-based fluid fuels and multi-products New slurry-phase synthesis reactors make the once through configuration especially attractive for CO-rich (e.g., coal- derived) syngas by making high once through conversion possible. For once through systems, a water gas shift reactor is often placed upstream of the synthesis reactor to generate the H2/CO ratio that maximizes synfuel conversion in the synthesis reactor. It is desirable to remove most CO2 from shifted syngas to maximize synthetic fuel conversion. Also, because synthesis catalysts are extremely sensitive to H2S and various trace contaminants, these must be removed to very low levels ahead of the synthesis reactor. Most trace metals can be removed at low-cost using an activated carbon filter. CO2 removal from syngas upstream of the synthesis reactor is a low- cost, partial de-carbonization option, especially when H2S and CO2 are co-captured and co-stored as an acid gas management strategy (Larson and Ren, 2003). Further de-carbonization can be realized in once through systems, at higher incremental cost, by adding additional shift reactors downstream of the synthesis reactor, recovering the CO2, and using the CO2-depleted, H2-rich syngas to make electricity or some mix of electricity plus H2 in a ‘polygeneration’ configuration (see Figure 3.16). The relative amounts of H2 and electricity produced would depend mainly on relative demands, as there do not seem to be thermodynamic or cost advantages for particular H2/electricity production ratios (Chiesa et al., 2005; Kreutz et al., 2005). When syngas is de- carbonized both upstream and downstream of the synthesis reactor (see Figure 3.16) it is feasible to capture and store as CO2 up to 90% of the carbon in the original feedstock except As discussed in Chapter 2, clean synthetic high H/C ratio fuels Coal derived Fischer-Tropsch synfuels and chemicals have been produced on a commercial scale in South Africa; coal methanol is produced in China and at one US plant; and coal SNG is produced at a North Dakota (US) plant (NETL-DOE, 2002). Since 2000, 1.5 MtCO2 yr-1 from the North Dakota synthetic natural gas plant (see Figure 3.15) have been transported by pipeline, 300 km to the Weyburn oil field in Saskatchewan, Canada for enhanced oil recovery with CO2 storage. Synfuel manufacture involves O2-blown gasification to make syngas, gas cooling, gas clean-up, water gas shift and acid gas (H2S/CO2) removal. Subsequently cleaned syngas is converted catalytically to fuel in a synthesis reactor and unconverted syngas is separated from the liquid fuel product. At this point either most unconverted gas is recycled to the synthesis reactor to generate additional liquid fuel and the remaining unconverted gas is used to make electricity for onsite needs, or syngas is passed only once through the synthesis reactor, and all unconverted syngas is used for other purposes, for example, to make electricity for sale to the electric grid as well as for onsite use. The latter once through option is often more competitive as a technology option (Williams, 2000; Gray and Tomlinson, 2001; Larson and Ren, 2003; Celik et al., 2005).PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |