logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 147

Chapter 3: Capture of CO2 135 Figure 3.16 Making liquid fuel, electricity and hydrogen from coal via gasification, with CO2 capture and storage. means of a chemical reaction, which can be reversed by pressure reduction and heating. The tertiary amine methyldiethanolamine (MDEA, see Table 3.2) is widely used in modern industrial processes, due to the high CO2 loading possible and the low regenerator heating load, relative to other solvents. Hot potassium carbonate (the most common commercial version of which is known as Benfield) was used for CO2 removal in most hydrogen plants until about 15 years ago. Physical solvent (or absorption) processes are mostly applicable to gas streams which have a high CO2 partial pressure and/or a high total pressure. They are often used to remove the CO2 from the mixed stream of CO2 and H2 that comes from the shift reaction in pre-combustion CO2 capture processes, such as product from partial oxidation of coal and heavy hydrocarbons. that contained in the synthetic fuel produced. An example of such a system (Celik et al., 2005) is one making 600 MW of dimethyl ether (containing 27% of coal input energy and 20% of coal input carbon) plus 365 MW of electricity (no H2) from coal. For this system the CO2 storage rate (equivalent to 74% of C in coal) is 3.8 Mtonnes yr-1 (39% from upstream of the synthesis reactor). The estimated fuel cycle-wide GHG emissions for dimethyl ether are 0.9 times those for crude oil-derived diesel and those for electricity are 0.09 times those for a 43% efficient coal-fired power plant with CO2 vented. 3.5.2.11 Physical solvent processes 3.5.2.9 Pressure swing adsorption Pressure Swing Adsorption (PSA) is the system of choice for the purification of syngas, where high purity H2 is required. However, it does not selectively separate CO2 from the other waste gases and so for an SMR application the CO2 concentration in the waste gas would be 40-50% and require further upgrading to produce pure CO2 for storage. Simultaneous H2 and CO2 separation is possible by using an additional PSA section to remove the CO2 prior to the H2 separation step, such as the Air Products Gemini Process (Sircar, 1979). The leading physical solvent processes are shown in Table 3.2. The regeneration of solvent is carried out by release of pressure at which CO2 evolves from the solvent, in one or more stages. If a deeper regeneration is required the solvent would be stripped by heating. The process has low energy consumption, as only the energy for pressurizing the solvent (liquid pumping) is required. The PSA process is built around adsorptive separations of cyclic character. The cycles consist of two basic steps: adsorption, in which the more adsorbable species are selectively removed from the feed gas and regeneration (desorption), when these species are removed from the adsorbent so that it can be ready for the next cycle. It is possible to obtain useful products during both adsorption and regeneration. The principal characteristic of PSA processes is the use of a decrease in pressure and/or the purge by a less adsorbable gas to clean the adsorbent bed. Apart from adsorption and regeneration, a single commercial PSA cycle consists of a number of additional steps, including co- and counter-current pressurization, pressure equalization and co- and counter-current depressurization. A detailed description of the PSA technique, along with its practical applications can be found elsewhere (Ruthven et al., 1994). The use of high sulphur fossil fuels in a pre-combustion capture process results in syngas with H2S. Acid gas components must be removed. If transport and storage of mixed CO2 and H2S is possible then both components can be removed together. Sulphinol was developed to achieve significantly higher solubilities of acidic components compared to amine solvents, without added problems of excessive corrosion, foaming, or solution degradation. It consists of a mixture of sulpholane (tetrahydrothiophene 1,1-dioxide), an alkanolamine and water in various proportions depending on the duty. If pure CO2 is required, then a selective process is required using physical solvents - often Rectisol or Selexol. The H2S must be separated at sufficiently high concentration (generally >50%) to be treated in a sulphur recovery plant. 3.5.2.10 Chemical solvent processes 3.5.2.12 Effect on other pollutants Chemical solvents are used to remove CO2 from syngas at partial pressures below about 1.5 MPa (Astarita et al., 1983) and are similar to those used in post-combustion capture (see Section 3.3.2.1). The solvent removes CO2 from the shifted syngas by Pre-combustion capture includes reforming, partial oxidation or gasification. In order to maintain the operability of the catalyst of reformers, sulphur (H2S) has to be removed prior to reforming. In gasification, sulphur can be captured from the

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-147

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP