CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 234

222 IPCC Special Report on Carbon dioxide Capture and Storage the produced reserves (not the original oil or gas in place) could be replaced by CO2 (theoretical capacity) for all reservoirs in Western Canada, on the basis of in situ pressure, temperature and pore volume. Reduction coefficients were then applied to account for aquifer invasion and all other effects (effective capacity). This value was then reduced for depth (900–3500 m) and size (practical capacity) (Bachu and Shaw, 2005). The storage potential of northwestern Europe is estimated at more than 40 GtCO2 for gas reservoirs and 7 GtCO2 for oil fields (Wildenborg et al., 2005b). The European estimates are based on all reserves (no significant fields occur above 800 m). Carbon dioxide density was calculated from the depth, pressure and temperature of fields in most cases; where these were not available, a density of 700 kg m–3 was used. No assumption was made about the amount of oil recovered from the fields before CO2 storage was initiated and tertiary recovery by EOR was not included. In Western Canada, the practical CO2 storage potential in the Alberta and Williston basins in reservoirs with capacity more than 1 MtCO2 each was estimated to be about 1 GtCO2 in oil reservoirs and about 4 GtCO2 in gas reservoirs. The capacity in all discovered oil and gas reservoirs is approximately 10 GtCO2 (Bachu et al., 2004; Bachu and Shaw, 2005). For Canada, the CO2 density was calculated for each reservoir from the pressure and temperature. The oil and gas recovery was that provided in the reserves databases or was based on actual production. For reservoirs suitable for EOR, an analytical method was developed to estimate how much would be produced and how much CO2 would be stored (Shaw and Bachu, 2002). In the United States, the total storage capacity in discovered oil and gas fields is estimated to be approximately 98 GtCO2 (Winter and Bergman, 1993; Bergman et al., 1997). Data on production to date and known reserves and resources indicate that Australia has up to 15 GtCO2 storage capacity in gas reservoirs and 0.7 GtCO2 in oil reservoirs. The Australian estimates used field data to recalculate the CO2 that could occupy the producible volume at field conditions. The total storage capacity in discovered fields for these regions with bottom-up assessments is 170 GtCO2. from EOR literature. Those oil reservoirs that passed were considered further in storage calculations (Shaw and Bachu, 2002). Although not yet assessed, it is almost certain that significant storage potential exists in all other oil and gas provinces around the world, such as the Middle East, Russia, Asia, Africa and Latin America. • These mechanisms operate both simultaneously and on different time scales, such that the time frame of CO2 storage affects the capacity estimate; volumetric storage is important initially, but later CO2 dissolves and reacts with minerals; Global capacity for CO2-EOR opportunities is estimated to have a geological storage capacity of 61–123 GtCO2, although as practised today, CO2-EOR is not engineered to maximize CO2 storage. In fact, it is optimized to maximize revenues from oil production, which in many cases requires minimizing the amount of CO2 retained in the reservoir. In the future, if storing CO2 has an economic value, co-optimizing CO2 storage and EOR may increase capacity estimates. In European capacity studies, it was considered likely that EOR would be attempted at all oil fields where CO2 storage took place, because it would generate additional revenue. The calculation in Wildenborg et al. (2005b) allows for different recovery factors based on API (American Petroleum Institute) gravity of oil. For Canada, all 10,000 oil reservoirs in Western Canada were screened for suitability for EOR on the basis of a set of criteria developed • Relations and interactions between these various mechanisms are very complex, evolve with time and are highly dependent on local conditions; Global estimates of storage capacity in oil reservoirs vary from 126 to 400 GtCO2 (Freund, 2001). These assessments, made on a top-down basis, include potential in undiscovered reservoirs. Comparable global capacity for CO2 storage in gas reservoirs is estimated at 800 GtCO2 (Freund, 2001). The combined estimate of total ultimate storage capacity in discovered oil and gas fields is therefore very likely 675–900 GtCO2. If undiscovered oil and gas fields are included, this figure would increase to 900–1200 GtCO2, but the confidence level would decrease.1 In comparison, more detailed regional estimates made for northwestern Europe, United States, Australia and Canada indicate a total of about 170 GtCO2 storage capacity in their existing oil and gas fields, with the discovered oil and gas reserves of these countries accounting for 18.9% of the world total (USGS, 2001a). Global storage estimates that are based on proportionality suggest that discovered worldwide oil and gas reservoirs have a capacity of 900 GtCO2, which is comparable to the global estimates by Freund (2001) of 800 GtCO2 for gas (Stevens et al., 2000) and 123 GtCO2 for oil and is assessed as a reliable value, although water invasion was not always taken into account. 5.3.7.2 Storage in deep saline formations Saline formations occur in sedimentary basins throughout the world, both onshore and on the continental shelves (Chapter 2 and Section 5.3.3) and are not limited to hydrocarbon provinces or coal basins. However, estimating the CO2 storage capacity of deep saline formations is presently a challenge for the following reasons: • There are multiple mechanisms for storage, including physical trapping beneath low permeability caprock, dissolution and mineralization; • There is no single, consistent, broadly available methodology for estimating CO2 storage capacity (various studies have used different methods that do not allow comparison). • Only limited seismic and well data are normally available (unlike data on oil and gas reservoirs). To understand the difficulties in assessing CO2 storage capacity in deep saline formations, we need to understand the interplay 1 Estimates of the undiscovered oil and gas are based on the USGS assessment that 30% more oil and gas will be discovered, compared to the resources known today.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)