PDF Publication Title:
Text from PDF Page: 258
246 IPCC Special Report on Carbon dioxide Capture and Storage CO2 through the subsurface will be slow. For example, Cawley et al. (2005) studied the effect of uncertainties in parameters such as the flow velocity in the aquifer and capillary entry pressure into caprock in their examination of CO2 storage in the Forties Oilfield in the North Sea. Over the 1000 year time scale examined in their study, Cawley et al. (2005) found that less than 0.2% of the stored CO2 enters into the overlying layers and even in the worse case, the maximum vertical distance moved by any of the CO2 was less than halfway to the seabed. Similarly, Lindeberg and Bergmo (2003) studied the Sleipner field and found that CO2 would not begin to migrate into the North Sea for 100,000 years and that even after a million years, the annual rate of release would be about 10–6 of the stored CO2 per year. by testing and sharpening understanding of CO2 transport and trapping mechanisms. Assessment of the fraction retained for geological storage projects is highly site-specific, depending on (1) the storage system design, including the geological characteristics of the selected storage site; (2) the injection system and related reservoir engineering; and (3) the methods of abandonment, including the performance of well-sealing technologies. If the above information is available, it is possible to estimate the fraction retained by using the models described in Section 5.4.2 and risk assessment methods described in Section 5.7.5. Therefore, it is also possible, in principle, to estimate the expected performance of an ensemble of storage projects that adhere to design guidelines such as site selection, seal integrity, injection depth and well closure technologies. Table 5.5 summarizes disparate lines of evidence on the integrity of CO2 storage systems. Simulations designed to explore the possible release of stored CO2 to the biosphere by multiple routes, including abandoned wells and other disturbances, have recently become available as a component of more general risk assessment activities (Section 5.7.5). Two studies of the Weyburn site, for example, assessed the probability of release to the biosphere. Walton et al. (2005) used a fully probabilistic model, with a simplified representation of CO2 transport, to compute a probability distribution for the cumulative fraction released to the biosphere. Walton et al. found that after 5000 years, the probability was equal that the cumulative amount released would be larger or smaller than 0.1% (the median release fraction) and found a 95% probability that <1% of the total amount stored would be released. Using a deterministic model of CO2 transport in the subsurface, Zhou et al. (2005) found no release to the biosphere in 5000 years. While using a probabilistic model of transport through abandoned wells, they found a statistical mean release of 0.001% and a maximum release of 0.14% (expressed as the cumulative fraction of stored CO2 released over 5000 years). For large-scale operational CO2 storage projects, assuming that sites are well selected, designed, operated and appropriately monitored, the balance of available evidence suggests the following: • It is very likely the fraction of stored CO2 retained is more In saline formations or oil and gas reservoirs with significant brine content, much of the CO2 will eventually dissolve in the brine (Figure 5.7), be trapped as a residual immobile phase (Figure 5.8) or be immobilized by geochemical reactions. The time scale for dissolution is typically short compared to the time for CO2 to migrate out of the storage formation by other processes (Ennis-King and Paterson, 2003; Lindeberg and Bergmo, 2003; Walton et al., 2005). It is expected that many storage projects could be selected and operated so that a very large fraction of the injected CO2 will dissolve. Once dissolved, CO2 can eventually be transported out of the injection site by basin-scale circulation or upward migration, but the time scales (millions of years) of such transport are typically sufficiently long that they can (arguably) be ignored in assessing the risk of leakage. The principal challenge in estimating the risks posed by CO2 that might seep from storage sites lies in estimating the spatial and temporal distribution of CO2 fluxes reaching the shallow subsurface and in predicting ambient CO2 concentration resulting from a given CO2 flux. Concentrations in surface air will be strongly influenced by surface topography and atmospheric conditions. Because CO2 is 50% denser than air, it tends to migrate downwards, flowing along the ground and collecting in shallow depressions, potentially creating much higher concentrations in confined spaces than in open terrain. As described in Section 5.1, several CO2 storage projects are now in operation and being carefully monitored. While no leakage of stored CO2 out of the storage formations has been observed in any of the current projects, time is too short and overall monitoring too limited, to enable direct empirical conclusions about the long-term performance of geological storage. Rather than providing a direct test of performance, the current projects improve the quality of long-duration performance predictions Seepage of CO2 is not uncommon in regions influenced by volcanism. Naturally occurring releases of CO2 provide a basis for understanding the transport of CO2 from the vadose zone to the atmosphere, as well as providing empirical data that link CO2 fluxes into the shallow subsurface with CO2 concentrations 5.7.3.5 Assessing the ability of operational geological storage projects to retain CO2 for long time periods than 99% over the first 100 years. • It is likely the fraction of stored CO2 retained is more than 99% over the first 1000 years. 5.7.4 Possible local and regional environmental hazards Risks to human health and safety arise (almost) exclusively from elevated CO2 concentrations in ambient air, either in confined outdoor environments, in caves or in buildings. Physiological and toxicological responses to elevated CO2 concentrations are relatively well understood (AI.3.3). At concentrations above about 2%, CO2 has a strong effect on respiratory physiology and at concentrations above 7–10%, it can cause unconsciousness and death. Exposure studies have not revealed any adverse health effect of chronic exposure to concentrations below 1%. 5.7.4.1 Potential hazards to human health and safetyPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)