logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 338

326 IPCC Special Report on Carbon dioxide Capture and Storage Box 7.1 Wet mineral carbonation process. A comprehensive energy and economic evaluation of the single-step wet carbonation process has been reported (O’Connor et al., 2005). Though limited to the specific carbonation process illustrated in Figure 7.3, this study is based on about 600 experimental tests and looks not only at the fundamental and technical aspects of the process, but also at the matching of carbon dioxide sources and potential sinks that in this case are natural silicate deposits. In particular, seven large ultramafic ores in the USA have been considered (two olivines, four serpentines (three lizardites and one antigorite) and one wollastonite). Three are located on the west coast, three on the east coast and one in Texas. The selection of the seven ores has also been based on considerations of regional coal consumption and potential CO2 availability. The three different minerals exhibit different reactivity, measured as the extent of the carbonation reaction after one hour under specified operating conditions. A trade-off has been observed between the extent of reaction and mineral pretreatment, thus higher reactivity is obtained for more intense pretreatment, which represents an energy cost. Mechanical activation is effective for the olivine and the wollastonite and involves the use of both conventional rod and ball milling techniques with an energy consumption of up to about 100 kWh t–1 mineral (standard pretreatment) and ultra-fine grinding for up to more than 200 kWh t–1 mineral (activated process). Conversion is no more than 60% in the former case and up to above 80% in the latter. In the case of the serpentine, after milling (standard pretreatment), thermal activation at 630°C is effective for the antigorite (up to 92% conversion) but only partially for the lizardite (maximum conversion not larger than 40%) and requires an energy consumption of about 350 kWh t–1 mineral. Optimal operating conditions for this wet process are mineral dependent and correspond to 185°C and 15 MPa for the olivine, 155°C and 11.5 MPa for the heat treated serpentine, and 100°C and 4 MPa for the wollastonite. In the first two cases, the carbonation reaction takes place in the presence of 0.64 mol L–1 sodium bicarbonate and 1 mol L–1 sodium chloride. table 7.1 Mineral carbonation storage costs for CO2. Ore (type of pre-treatment) Conversion after 1 hour (%) Cost (uS$/t ore) Energy inputa (kWh/tCO2 stored) Cost (uS$/tCO2 stored) Olivine (standard) 61 19 310 55 Olivine (activated) 81 27 640 59 Lizardite (standard) 9 15 180 430 Lizardite (activated) 40 44 180+2120=2300 210 Antigorite (standard) 62 15 180 250 Antigorite (activated) 92 48 180+830=1010 78 Wollastonite (standard) 43 15 190 91 Wollastonite (activated) 82 19 430 64 a The study assumes a coal fired power plant with 35% efficiency, corresponding to one tonne of CO2 released per 1000 kWh electricity. The equivalent heat value for the same coal input is then 2,850 kWh. The two items in the sum break the total energy input into electrical + thermal; in all other cases it is pure electrical energy. Process costs have been calculated for these seven ores in the case of both standard mineral pretreatment and activated process. Costs include only storage, thus neither CO2 capture nor CO2 transport and are based on the assumption that CO2 is received pure at 15 MPa at the plant. Investment costs are calculated accounting for the different reactor costs depending on the different operating conditions corresponding to the different mineral ores. Storage costs are calculated per tonne of silicate ore and per tonne of CO2 stored and are complemented by the energy consumption per tonne of CO2 stored in the above Table. The table highlights a trade-off between energy input associated with the pretreatment procedure and cost per unit carbon dioxide stored. Assuming that the cheapest technology is used for each mineral, costs range from 55 US$/tCO2 stored for olivine (standard pretreatment), to 64 US$/tCO2 stored for wollastonite (activated), to 78 US$/tCO2 stored for antigorite (activated), to 210 US$/tCO2 stored for lizardite (activated). Since the last case requires too large an energy input, the cost of the most realistic technologies falls into a range from 50 to 100 US$/tCO2 stored.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-338

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP