logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 359

Chapter 8: Cost and economic potential 347 Box 8.1 Defining avoided costs for a fossil fuel power plant In general, the capture, transport, and storage of CO2 require energy inputs. For a power plant, this means that amount of fuel input (and therefore CO2 emissions) increases per unit of net power output. As a result, the amount of CO2 produced per unit of product (e.g., a kWh of electricity) is greater for the power plant with CCS than the reference plant, as shown in Figure 8.2 To determine the CO2 reductions one can attribute to CCS, one needs to compare CO2 emissions of the plant with capture to those of the reference plant without capture. These are the avoided emissions. Unless the energy requirements for capture and storage are zero, the amount of CO2 avoided is always less than the amount of CO2 captured. The cost in US$/tonne avoided is therefore greater than the cost in US$/tonne captured. CO2 captured will be different from the amount of atmospheric CO2 emissions ‘avoided’ during the production of a given amount of a useful product (e.g., a kilowatt-hour of electricity or a kilogram of H2). So any cost expressed per tonne of CO2 should be clearly defined in terms of its basis, e.g., either a captured basis or an avoided basis (see Box 8.1). Mitigation cost is best represented as avoided cost. Table 8.3 presents ranges for total avoided costs for CO2 capture, transport, and storage from four types of sources. avoided based on a reference plant that is different from the CCS plant (e.g., a PC or IGCC plant with CCS using an NGCC reference plant). In Table 8.4, the reference plant represents the least-cost plant that would ‘normally’ be built at a particular location in the absence of a carbon constraint. In many regions today, this would be either a PC plant or an NGCC plant. The mitigation costs (US$/tCO2 avoided) reported in Table 8.3 are context-specific and depend very much on what is chosen as a reference plant. In Table 8.3, the reference plant is a power plant of the same type as the power plant with CCS. The mitigation costs here therefore represent the incremental cost of capturing and storing CO2 from a particular type of plant. A CO2 mitigation cost also can be defined for a collection of plants, such as a national energy system, subject to a given level of CO2 abatement. In this case the plant-level product costs presented in this section would be used as the basic inputs to energy-economic models that are widely used for policy analysis and for the quantification of overall mitigation strategies and costs for CO2 abatement. Section 8.3 discusses the nature of these models and presents illustrative model results, including the cost of CCS, its economic potential, and its relationship to other mitigation options. In some situations, it can be useful to calculate a cost of CO2 table 8.3a Range of total costs for CO2 capture, transport, and geological storage based on current technology for new power plants. Pulverized Coal Power Plant Natural Gas Combined Cycle Power Plant integrated Coal Gasification Combined Cycle Power Plant Cost of electricity without CCS (US$ MWh-1) 43-52 31-50 41-61 Power plant with capture Increased Fuel Requirement (%) 24-40 11-22 14-25 CO2 captured (kg MWh-1) 820-970 360-410 670-940 CO2 avoided (kg MWh-1) 620-700 300-320 590-730 % CO2 avoided 81-88 83-88 81-91 Power plant with capture and geological storage6 Cost of electricity (US$ MWh-1) 63-99 43-77 55-91 Electricity cost increase (US$ MWh-1) 19-47 12-29 10-32 % increase 43-91 37-85 21-78 Mitigation cost (US$/tCO2 avoided) 30-71 38-91 14-53 Mitigation cost (US$/tC avoided) 110-260 140-330 51-200 Power plant with capture and enhanced oil recovery7 Cost of electricity (US$ MWh-1) 49-81 37-70 40-75 Electricity cost increase (US$ MWh-1) 5-29 6-22 (-5)-19 % increase 12-57 19-63 (-10)-46 Mitigation cost (US$/tCO2 avoided) 9-44 19-68 (-7)-31 Mitigation cost (US$/tC avoided) 31-160 71-250 (-25)-120 6 Capture costs represent range from Tables 3.7, 3.9 and 3.10. Transport costs range from 0–5 US$/tCO2. Geological storage cost (including monitoring) range from 0.6–8.3 US$/tCO2. 7 Capture costs represent range from Tables 3.7, 3.9 and 3.10. Transport costs range from 0–5 US$/tCO2 stored. Costs for geological storage including EOR range from –10 to –16 US$/tCO2 stored.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-359

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP