PDF Publication Title:
Text from PDF Page: 369
Chapter 8: Cost and economic potential 357 Figure 8.7 Deployment of CCS systems as a function of time from 1990 to 2100 in the IPCC TAR mitigation scenarios where atmospheric CO2 concentrations stabilize at between 450 to 750 ppmv. Coloured thick lines show the minimum and maximum contribution of CCS for each SRES scenario group, and thin lines depict the contributions in individual scenarios. Vertical axes on the right-hand side illustrate the range of CCS deployment across the stabilization levels for each SRES scenario group in the year 2100. 8.3.3.3 Geographic distribution McFarland et al. (2003) foresee the eventual deployment of CCS technologies throughout the world but note that the timing of the entry of CCS technologies into a particular region is influenced by local conditions such as the relative price of coal and natural gas in a region. Dooley et al. (2002) show that the policy regime, and in particular the extent of emissions trading, can influence where CCS technologies are deployed. In the specific case examined by this paper, it was demonstrated that, where emissions trading was severely constrained (and where the cost of abatement was therefore higher), CCS technologies tended to deploy more quickly and more extensively in the US and the EU. On the other hand, in the absence of an efficient emissions-trading system spanning all of the Annex B nations, CCS was used less intensively and CCS utilization was spread more evenly across these nations as the EU and US found it cheaper to buy CCS-derived emission allowances from regions like the former Soviet Union. of CCS is highly dependent upon the underlying base case. For example, in the high economic growth and carbon-intensive baseline scenarios (A1FI), the development path of CCS is characterized by steadily increasing contributions, driven by the rapidly growing use of hydrocarbon resources. By contrast, other scenarios (e.g., A1B and B2) depict CCS deployment to peak during the second half of the century. In a number of these scenarios, the contribution of CCS declines to less than 11 GtCO2 per year (3 GtC per year) until the end of the century. These scenarios reflect the fact that CCS could be viewed as a transitional mitigation option (bridging the transition from today’s fossil-intensive energy system to a post-fossil system with sizable contributions from renewables). Table 8.5 gives the corresponding deployment of CCS in the IPCC TAR mitigation scenarios for four world regions. All values are given as averages across scenario results from different modelling teams. The data in this table (in particular the far left-hand column which summarizes average CO2 storage across all scenarios) help to demonstrate a common and consistent finding of the literature: over the course of this century, CCS will deploy throughout the world, most extensively in the developing nations of today (tomorrow’s largest emitters of CO2). These nations will therefore be likely candidates for adopting CCS to control their growing emissions.16 Given these models’ relatively coarse top-down view of the world, there is less agreement about when the first commercial CCS units will become operational. This is – at least in part – attributable to the importance of policy in creating the context in which initial units will deploy. For example, McFarland et al. (2003) foresee CCS deployment beginning around 2035. Other modelling exercises have shown CCS systems beginning to deploy – at a lower level of less than 370 MtCO2 a year (100 MtC a year) – in the period 2005–2020 (see, for example, Dooley et al., 2000). Moreover, in an examination of CCS deployment in Japan, Akimoto et al. (2003) show CCS deployment beginning in 2010–2020. In a large body of literature (Edmonds et al. Fujii et al. (2002) note that the actual deployment of CCS technologies in any given region will depend upon a host of geological and geographical conditions that are, at present, poorly represented in top-down energy and economic models. In an attempt to address the shortcomings noted by Fujii et al. (2002) and others, especially in the way in which the cost of CO2 transport and storage are parameterized in top-down models, Dooley et al. (2004b) employed graded CO2 storage supply curves for all regions of the world based upon a preliminary assessment of the literature’s estimate of regional CO2 storage 2003; Dooley and Wise, 2003; Riahi et al. 2003; IEA, 2004), there is agreement that, in a CO2-constrained world, CCS systems might begin to deploy in the next few decades and that this deployment will expand significantly after the middle of the century. The variation in the estimates of the timing of CCS-system deployment is attributable to the different ways energy and economic models parameterize CCS systems and to the extent to which the potential for early opportunities – such as EOR or ECBM – is taken into account. Other factors that influence the timing of CCS diffusion are the rate of increase and absolute level of the carbon price. 16 This trend can be seen particularly clearly in the far left-hand column of Table 8.5, which gives the average CCS deployment across all scenarios from the various models. Note, nevertheless, a few scenarios belonging to the B1 and B2 scenario family, which suggest larger levels of deployment for CCS in the developed world.PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)