logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 370

358 IPCC Special Report on Carbon dioxide Capture and Storage capacity. In this framework, where the cost of CO2 storage varies across the globe depending upon the quantity, quality (including proximity) and type of CO2 storage reservoirs present in the region, as well as upon the demand for CO2 storage (driven by factors such as the size of the regional economy, the stringency of the modelled emissions reduction regime), the authors show that the use of CCS across the globe can be grouped into three broad categories: (1) countries in which the use of CCS does not appear to face either an economic or physical constraint on CCS deployment given the large potential CO2 storage resource compared to projected demand (e.g., Australia, Canada, and the United States) and where CCS should therefore deploy to the extent that it makes economic sense to do so; (2) countries in which the supply of potential geological storage reservoirs (the authors did not consider ocean storage) is small in comparison to potential demand (e.g., Japan and South Korea) and where other abatement options must therefore be pressed into service to meet the modelled emissions reduction levels; and (3) the rest of the world in which the degree to which CCS deployment is constrained is contingent upon the stringency of the emission constraint and the useable CO2 storage resource. The authors note that discovering the true CO2 storage potential in regions of the world is a pressing issue; knowing whether a country or a region has ‘sufficient’ CO2 storage capacity is a critical variable in these modelling analyses because it can fundamentally alter the way in which a country’s energy infrastructure evolves in response to various modelled emissions constraints. 8.3.3. Long-term economic impact CO2 concentrations limits such as 750 ppmv, to trillions of dollars for more stringent CO2 concentrations such as 450 ppm 17. Dooley et al. (2002) estimate cost savings in excess of 36% and McFarland et al. (2004) a reduction in the carbon permit price by 110 US$/tCO2 in scenarios where CCS technologies are allowed to deploy when compared to scenarios in which they are not. 8.3.3. Interaction with other technologies As noted above, the future deployment of CCS will depend on a number of factors, many of which interact with each other. The deployment of CCS will be impacted by factors such as the development and deployment of renewable energy and nuclear power (Mori, 2000). Edmonds et al. (2003) report that CCS technologies can synergistically interact with other technologies and in doing so help to lower the cost and therefore increase the overall economic potential of less carbon-intensive technologies. The same authors note that these synergies are perhaps particularly important for the combination of CCS, H2 production technologies and H2 end-use systems (e.g., fuel cells). On the other hand, the widespread availability of CCS technologies implies an ability to meet a given emissions reduction at a lower marginal cost, reducing demand for substitute technologies at the margin. In other words, CCS is competing with some technologies, such as energy-intensity improvements, nuclear, fusion, solar power options, and wind. The nature of that interaction depends strongly on the climate policy environment and the costs and potential of alternative mitigation options, which are subject to large variations depending on site-specific, local conditions (IPCC, 2001). At the global level, which is spatially more aggregated, this variation translates into the parallel deployment of alternative options, taking into account the importance of a diversified technology portfolio for addressing emissions mitigation in a cost-effective way. An increasing body of literature (Willams, 1998; Obersteiner et al., 2001; Rhodes and Keith, 2003; Makihira et al., 2003; Edmonds et al., 2003, Möllersten et al., 2003) has begun to examine the use of CCS systems with biomass-fed energy systems to create useful energy (electricity or transportation fuels) as well as excess emissions credits generated by the system’s resulting ‘negative emissions’. These systems can be fuelled solely by biomass, or biomass can be co-fired in conventional coal-burning plants, in which case the quantity is normally limited to about 10–15% of the energy input. Obersteiner et al. (2001) performed an analysis based on the SRES scenarios, estimating that 880 to 1650 GtCO2 (240 to 450 GtC) of the scenario’s cumulative emissions that are vented during biomass-based energy-conversion processes could potentially be available for capture and storage over the course of the century. Rhodes and Keith (2003) note that, while this coupled bio-energy CCS system would generate expensive 17 Savings are measured as imputed gains of GDP due to CCS deployment, in contrast to a world where CCS is not considered to be part of the mitigation portfolio. An increasing body of literature has been analyzing short- and long-term financial requirements for CCS. The World Energy Investment Outlook 2003 (IEA, 2003) estimates an upper limit for investment in CCS technologies for the OECD of about US$ 350 to 440 billion over the next 30 years, assuming that all new power plant installations will be equipped with CCS. Similarly, Riahi et al. (2004) estimate that up-front investments for initial niche market applications and demonstration plants could amount to about US$ 70 billion or 0.2% of the total global energy systems costs over the next 20 years. This would correspond to a market share of CCS of about 3.5% of total installed fossil-power generation capacities in the OECD countries by 2020, where most of the initial CCS capacities are expected to be installed. Long-term investment requirements for the full integration of CCS in the electricity sector as a whole are subject to major uncertainties. Analyses with integrated assessment models indicate that the costs of decarbonizing the electricity sector via CCS might be about three to four per cent of total energy- related systems costs over the course of the century (Riahi et al., 2004). Most importantly, these models also point out that the opportunity costs of CCS not being part of the CO2 mitigation portfolio would be significant. Edmonds et al. (2000) indicate that savings over the course of this century associated with the wide-scale deployment of CCS technologies when compared to a scenario in which these technologies do not exist could be in the range of tens of billions of 1990 US dollars for high

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-370

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP