logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 371

Chapter 8: Cost and economic potential 359 electricity in a world of low carbon prices, this system could produce competitively priced electricity in a world with carbon prices in excess of 54.5 US$/tCO2 (200 US$/tC). Similarly, Makihira et al. (2003) estimate that CO2 capture during hydrogen production from biomass could become competitive at carbon prices above 54.5 to 109 US$/tCO2 (200 to 400 US$/tC). 8.4 Economic impacts of different storage times number of important criteria to be considered. Baer points out that at least three risk categories should to be taken into account as well: • ecological risk: the possibility that ‘optimal’ leakage may As discussed in the relevant chapters, geological and ocean storage might not provide permanent storage for all of the CO2 injected. The question arises of how the possibility of leakage from reservoirs can be taken into account in the evaluation of different storage options and in the comparison of CO2 storage with mitigation options in which CO2 emissions are avoided. cause carbon prices to greatly exceed current expectations, with consequences for the maintenance of liability and distribution of costs; and Chapters 5 and 6 discuss the expected fractions of CO2 retained in storage for geological and ocean reservoirs respectively. For example, Box 6.7 suggests four types of measures for ocean storage: storage efficiency, airborne fraction, net present value, and global warming potential. Chapter 9 discusses accounting issues relating to the possible impermanence of stored CO2. Chapter 9 also contains a review of the broader literature on the value of delayed emissions, primarily focusing on sequestration in the terrestrial biosphere. In this section, we focus specifically on the economic impacts of differing storage times in geological and ocean reservoirs. As these points have not been extensively discussed in the literature so far, the further development of the scientific debate on these issues must be followed closely. Herzog et al. (2003) suggest that CO2 storage and leakage can be looked upon as two separate, discrete events. They represent the value of temporary storage as a familiar economic problem, with explicitly stated assumptions about the discount rate and carbon prices. If someone stores a tonne of CO2 today, they will be credited with today’s carbon price. Any future leakage will have to be compensated by paying the carbon price in effect at that time. Whether non-permanent storage options will be economically attractive depends on assumptions about the leakage rate, discount rate and relative carbon permit prices. In practice, this may turn out to be a difficult issue since the commercial entity that undertakes the storage may no longer exist when leakage rates have been clarified (as Baer (2003) points out), and hence governments or society at large might need to cover the leakage risk of many storage sites rather than the entity that undertakes the storage. Cost developments for CCS technologies are now estimated based on literature, expert views and a few recent CCS deployments. Costs of large-scale integrated CCS applications are still uncertain and their variability depends among other things on many site-specific conditions. Especially in the case of large-scale CCS biomass based applications, there is a lack of experience and therefore little information in the literature about the costs of these systems. Ha-Duong and Keith (2003) explore the trade-offs between discounting, leakage, the cost of CO2 storage and the energy penalty. They use both an analytical approach and an integrated assessment numerical model in their assessment. In the latter case, with CCS modelled as a backstop technology, they find that, for an optimal mix of CO2 abatement and CCS technologies, ‘an (annual) leakage rate of 0.1% is nearly the same as perfect storage while a leakage rate of 0.5% renders storage unattractive’. There is little empirical evidence about possible cost decreases related to ‘learning by doing’ for integrated CCS systems since the demonstration and commercial deployment of these systems has only recently begun. Furthermore, the impact of targeted research, development and deployment (RD&D) of CCS investments on the level and rate of CCS deployment is poorly understood at this time. This lack of knowledge about how technologies will deploy in the future and the impact of RD&D on the technology’s deployment is a generic issue and is not specific to CCS deployment. Some fundamental points about the limitations of the economic valuation approaches presented in the literature have been raised by Baer (2003). He argues that financial efficiency, which is at the heart of the economic approaches to the valuation of, and decisions about, non-permanent storage is only one of a In addition to current and future CCS technological costs, there are other possible issues that are not well known at this point and that would affect the future deployment of CCS systems: for example, costs related to the monitoring and regulatory framework, possible environmental damage costs, costs associated with liability and possible public-acceptance issues. preclude future climate stabilization; • financial risk: the possibility that future conditions will • political risk: the possibility that institutions with an interest in CO2 storage may manipulate the regulatory environment in their favour. In summary, within this purely economic framework, the few studies that have looked at this topic indicate that some CO2 leakage can be accommodated while still making progress towards the goal of stabilizing atmospheric concentrations of CO2. However, due to the uncertainties of the assumptions, the impact of different leakage rates and therefore the impact of different storage times are hard to quantify. 8.5 Gaps in knowledge There are at present no known, full assessments of life-cycle costs for deployed CCS systems, and in particular the economic impact of the capture, transport and storage of non-pure CO2 streams. The development of bottom-up CCS deployment cost

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-371

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP