logo

LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTION

PDF Publication Title:

LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTION ( limits-small-scale-pressure-swing-adsorption )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

accounting for axial dispersion effects has a significant impact on the mass transfer coefficient estimation, often measured with breakthrough experiments. An important limitation for small scale PSA processes is the limit on adsorbent utilization. Decreasing cycle time for a PSA process typically results in a gain in adsorbent utilization, often represented in industry by the bed size factor (BSF). Increasing adsorbent utilization is represented by a decrease in BSF. A low BSF is desirable because it represents a smaller overall process size, which is highly attractive for portable systems. Currently, there is no consensus in literature if a lower limit for the BSF exists and what may cause it. In this study, a two column small scale PSA process was used to measure the cycle time of a minimum BSF. It represents the first experimental literature example of a minimum BSF for a two column air separation process. The data was then used with a literature model to better understand why the minimum was occurring and what was primarily causing it. It was determined that macropore diffusional resistance is the primary cause of a minimum BSF. v

PDF Image | LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTION

limits-small-scale-pressure-swing-adsorption-005

PDF Search Title:

LIMITS OF SMALL SCALE PRESSURE SWING ADSORPTION

Original File Name Searched:

Limits of Small Scale PSA_Aaron Moran.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP