PDF Publication Title:
Text from PDF Page: 103
9 References 90 [81] M. S. A. Baksh, R. T. Yang, Unique adsorption properties and potential energy profiles of microporous pillared clays, AIChE J. 38 (1992) 1357–1368. [82] Adsorption and its Applications in Industry and Environmental Protection - Vol.I: Applications in Industry, Elsevier, 1999. [83] D. Shen, M. Bülow, N. O. Lemcoff, Mechanisms of Molecular Mobility of Oxygen and Nitrogen in Carbon Molecular Sieves, Adsorption 9 (2003) 295–302. [84] H. K. Chagger, F. E. Ndaji, M. L. Sykes, K. M. Thomas, Kinetics of adsorption and diffusional characteristics of carbon molecular sieves, Carbon 33 (1995) 1405–1411. [85] H. Qinglin, S. Farooq, I. A. Karimi, Prediction of binary gas diffusion in carbon molecular sieves at high pressure, AIChE J. 50 (2004) 351–367. [86] Y. D. Chen, R. T. Yang, P. Uawithya, Diffusion of oxygen, nitrogen and their mixtures in carbon molecular sieve, AIChE J. 40 (1994) 577–585. [87] J. Koresh, A. Soffer, Molecular Sieve Carbons: Part 3.-Adsorption Kinetics According to a Surface-barrier Model, J. Cham. Soc., Faraday Trans. 1 77 (1981) 3005–3018. [88] Y.-S. Bae, C.-H. Lee, Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure, Carbon 43 (2005) 95–107. [89] M. C. Campo, F. D. Magalhães, A. Mendes, Comparative study between a CMS membrane and a CMS adsorbent: Part I—Morphology, adsorption equilibrium and kinetics, Journal of Membrane Science 346 (2010) 15–25. [90] J.-G. Jee, S.-J. Lee, C.-H. Lee, Comparison of the adsorption dynamics of air on zeolite 5A and carbon molecular sieve beds, Korean J. Chem. Eng. 21 (2004) 1183–1192. [91] Y.-S. Bae, J.-H. Moon, H. Ahn, C.-H. Lee, Effects of adsorbate properties on adsorption mechanism in a carbon molecular sieve, Korean J. Chem. Eng. 21 (2004) 712– 720. [92] C. R. Reid, K. M. Thomas, Adsorption of Gases on a Carbon Molecular Sieve Used for Air Separation: Linear Adsorptives as Probes for Kinetic Selectivity, Langmuir 15 (1999) 3206–3218. [93] Y.-S- Bae, Y.-K. Ryu, C.-H. Lee, Pressure-dependent models for adsorption kinetics on a CMS, Adsorption Science and Technology (2003) 167–171. [94] A. L. Cabrera, J. E. Zehner, C. G. Coe, T. R. Gaffney, T. S. Farris, J. N. Armor, Preparation of carbon molecular sieves, I. Two-step hydrocarbon deposition with a single hydrocarbon, Carbon 31 (1993) 969–976. [95] K. Chihara, M. Suzuki, Control of micropore diffusivities of molecular sieving carbon by deposition of hydrocarbons, Carbon 17 (1979) 339–343. [96] Y. Kawabuchi, M. Kishino, S. Kawano, D. D. Whitehurst, I. Mochida, Carbon Deposition from Benzene and Cyclohexane onto Active Carbon Fiber To Control Its Pore Size, Langmuir 12 (1996) 4281–4285. [97] Y. Yamane, H. Tanaka, M. T. Miyahara, In silico synthesis of carbon molecular sieves for high-performance air separation, Carbon 141 (2019) 626–634.PDF Image | Modelling and Simulation of Twin-Bed Pressure Swing Adsorption Plants
PDF Search Title:
Modelling and Simulation of Twin-Bed Pressure Swing Adsorption PlantsOriginal File Name Searched:
dissertation_marcinek.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)