Modelling and Simulation of Twin-Bed Pressure Swing Adsorption Plants

PDF Publication Title:

Modelling and Simulation of Twin-Bed Pressure Swing Adsorption Plants ( modelling-and-simulation-twin-bed-pressure-swing-adsorption- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 104

9 References 91 [98] Z. Hu, N. Maes, E. F. Vansant, Molecular probe technique for the assessment of the carbon molecular sieve structure, Journal of Porous Materials 2 (1995) 19–23. [99] J. S. Adams, A. K.Itta, C. Zhang, G. B.Wenz, O. Sanyal, W. J.Koros, New insights into structural evolution in carbon molecular sieve membranes during pyrolysis, Carbon 141 (2019) 238–246. [100] M. Rungta, G. B. Wenz, C. Zhang, L. Xu, W. Qiu, J. S. Adams, W. J. Koros, Carbon molecular sieve structure development and membrane performance relationships, Carbon 115 (2017) 237–248. [101] K. M. Steel, W. J. Koros, Investigation of porosity of carbon materials and related effectson gas separation properties, Carbon 41 (2003) 253–266. [102] Osaka Gas Chemicals Co., Ltd., Material Safety Data Sheet: SHIRASAGI MSC CT- 350. [103] CarboTech AC GmbH, Technical Information: Carbon Molecular Sieve SHIRASAGI MSC CT-350. [104] C. A. Grande, Advances in Pressure Swing Adsorption for Gas Separation, ISRN Chemical Engineering 2012 (2012) 1–13. [105] C. Y. Pan, D. Basmadjian, An analysis of adiabatic sorption of single solutes in fixed beds: pure thermal wave formation and its practical implications, Chemical Engineering Science 25 (1970) 1653–1664. [106] A. Möller, J. Guderian, J. Möllmer, M. Lange, J. Hofmann, R. Gläser, Kinetische Untersuchungen der adsorptiven Luftzerlegung an Kohlenstoffmolekularsieben, Chemie Ingenieur Technik 85 (2013) 1680–1685. [107] J. C. Knox, A. D. Ebner, M. D. LeVan, R. F. Coker, J. A. Ritter, Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption, Industrial & engineering chemistry research 55 (2016) 4734–4748. [108] L. H. de Oliveira, J. G. Meneguin, E. A. da Silva, M. A. de Barros, P.A. Arroyo, W. M. Grava, J. F. do Nascimento, Linear Driving Force Model in Carbon Dioxide Capture by Adsorption, AMM 830 (2016) 38–45. [109] L. Palagi, A. Pesyridis, E. Sciubba, L. Tocci, Machine Learning for the prediction of the dynamic behavior of a small scale ORC system, Energy 166 (2019) 72–82.

PDF Image | Modelling and Simulation of Twin-Bed Pressure Swing Adsorption Plants

PDF Search Title:

Modelling and Simulation of Twin-Bed Pressure Swing Adsorption Plants

Original File Name Searched:

dissertation_marcinek.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)