PDF Publication Title:
Text from PDF Page: 057
24 Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R., Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 2011, 4: 3030–3040. 25 Yu, J., Balbuena, P. B. Water Effects on Postcombustion CO2 Capture in Mg-MOF-74. J. Phys. Chem. C. 2013, 117: 3383–3388. 26 Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areán, C. O.; Bordiga, S. Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74. J. Phys. Chem., 2010, 114: 11185-11191. 27 Krishna, R.; Long, J. R. Screening Metal–Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber. J. Phys. Chem. C. 2011, 115: 12941–12950. 28 Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; LeVan, M. D. CO2/H2O Adsorption Equilibrium and Rates on Metal−Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir. 2010, 26: 14301-14307. 29 Talu, O. Measurements and analysis of mixture adsorption equilibrium in porous solids, Chem. Ing. Technol. 2011, 83: 67-82. 30 Yazaydin, A. Ö.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q. Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. Chem. Mater. 2009, 21(8): 1425-1430. 31 Yu, K.; Kiesling, K: Schmidt. J. R. Trace Flue Gas Contaminants Poison Coordinatively Unsaturated Metal–Organic Frameworks: Implications for CO2 Adsorption and Separation. J. Phys. Chem. C. 2012, 116: 20480−20488. 32 Supronowicz, B.; Mavrandonakis, A.; Heine, T. Interaction of Small Gases with the Unsaturated Metal Centers of the HKUST-1 Metal Organic Framework. J. Phys. Chem. C. 2013, 117: 14570−14578. 33 Castillo, J. M.; Vlugt, T. H. J.; Calero, S. J. Understanding Water Adsorption in Cu−BTC Metal−Organic Frameworks. Phys. Chem. C. Lett. 2008, 112(41): 15934-15939. 34 Tan, K.; Zuluaga S.; Wang, H.; Canepa, P.; Soliman, K.; Cure, J.; Li, J.; Thonhauser, T.; Chabal, Y. J. Interaction of Acid Gases SO2 and NO2 with Coordinatively Unsaturated Metal Organic Frameworks: M‐ MOF-74 (M = Zn, Mg, Ni, Co). Chem. Mater., 2017, 29: 4227−4235. 35 Liu, Y.; Liu, J.; Lin, J. Y. S.; Chang, M. Effects of water vapor and trace gas impurities in flue gas on CO2/N2 separation using ZIF-68. J. Phys. Chem. C., 2014, 118(13), 6744–6751. 36 Yu, J.; Ma, Y.; Balbuena. P. B. Evaluation of the Impact of H2O, O2, and SO2 on Postcombustion CO2 Capture in Metal–Organic Frameworks. Langmuir. 2012, 28: 8064−8071. 37 Ding, L.; Yazaydin, A. O. How Well Do Metal–Organic Frameworks Tolerate Flue Gas Impurities?. J. Phys. Chem. C. 2012, 116: 22987−22991. 38 Glover, T. G.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci., 2011, 66: 163-170. 39 Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R.; Marshall, M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 2008, 14(2): 415-422. 40 Vacuum Swing Adsorption: Bed Layering and Purge to Feed Ratio. AIChE J., 2014, 60(2): 673-689. The Role of Water on Postcombustion CO2 Capture by 41 Yu, J.; Wu, Y.; Balbuena, P. B. Response of Metal Sites toward Water Effects on Postcombustion CO2 Li, G.; Xiao, P.; Zhang, J.; Webley, P.; Xu, D. Capture in Metal−Organic Frameworks. ACS Sustainable Chem. Eng. 2016, 4: 2387−2394. 42 Lee, K.; Howe, J. D.; Lin, L-Ch; Smit, B.; Neaton, J. B. Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chem. Mater. 2015, 27: 668−678. 43 Xie, J.; Yan, N.; Yang, S. Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas. J. Environ. Sci. 2012, 24(4): 640–644. 44 Sun, W.; Lin, L.-C.; Peng, X., Smit, B. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases. AIChE J. 2014, 60: 2314-2323. 57PDF Image | swing adsorption processes for CO2 capture in selected MOFs and zeolites
PDF Search Title:
swing adsorption processes for CO2 capture in selected MOFs and zeolitesOriginal File Name Searched:
679077.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)