PDF Publication Title:
Text from PDF Page: 058
45 Liu, Q.; Ning, L.; Zheng, S.; Tao, M.; Shi, Y.; He, Y. Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants. Nature, Scientific Reports. 2013, 3: 2916. 46 Class of Versatile Nanoporous Materials. Advanced Materials, 2011, 23: 249-267. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metal-Organic Frameworks: A Rapidly Growing 47 Smit, B.; Maesen, T. L. M. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev., 2008, 108: 4125-4184. 48 Bahamon, D.; Vega, L. F.; Systematic evaluation of materials for post-combustion CO2 capture in a Temperature Swing Adsorption process. Chem. Eng. J., 2016, 284: 438–447. 49 Goeppert, A.; Czaun, M.; Prakash, G. K. S.; Olah, G. A. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ. Sci., 2012, 5: 7833-7853. 50 Krungleviciute, V.; Lask, K.; Heroux, L.; Migone, A. D.; Lee, J.-Y.; Li, J.; Skoulidas, A. Argon Adsorption on Cu3(Benzene-1,3,5-tricarboxylate)2(H2O)3 Metal−Organic Framework. Langmuir. 2007, 23: 3106-3109. 51 Yang, Q. Y.; Xue, C. Y.; Zhong, C. L.; Chen, J. F. Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework. AIChE J. 2007, 53(11): 2832-2840. 52 Prestipino, C.; Regli, L.; Vitillo; J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P.L.; Kongshaug, K.O.; Bordiga, Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates. S. Chem. Mater. 2006, 18: 1337-1346. 53 Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc., 2008, 130(33): 10870- 10871. 54 Prats, H.; Bahamon, D.; Alonso, G.; Giménez, X.; Gamallo, P; Sayos, R. Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes. J. CO2 Util. 2017, 19: 100–111. 55 Queen, W. L., Hudson, M. R., Bloch, E. D., Mason, J. A., Gonzalez, M. I., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A.; James, M. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M= Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemical Science, 2014, 5(12): 4569-4581. 56 Olson, D. H. The crystal structure of dehydrated NaX, Zeolites, 1995, 15: 439– 443. 57 Materials Studio 6.1; Accelrys Inc.: San Diego, CA, 2013. 58 Frenkel, D.; Smit, B. Understanding Molecular Simulation: from Algorithms to Applications, Academic Press, London, 2002. ISBN: 0-12-267351-4 59 Coudert, F.-X.; Boutin, A.; Jeffroy, M.; Mellot-Draznieks, C.; Fuchs, A. H. Thermodynamic Methods and Models to Study Flexible Metal–Organic Frameworks. Chem. Phys. Chem. 2011, 12: 247–258. 60 Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA (PNAS). 2010, 107: 9938–9943. 61 Yan, Y.; Lin, X.; Yang, S. H.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schroder, M. Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem. Commun. 2009, 7: 1025–1027. 62 Watanabe, K.; Austin, N.; Stapleton, M. R. Investigation of the Air Separation Properties of Zeolites Types A, X and Y by Monte Carlo Simulations. Mol. Simul. 1995, 15: 197-221. 63 Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 1990, 94: 8897-8909. 64 Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114: 10024-10035. 65 Pham, T.; Forrest, K. A.; McLaughlin, K.; Eckert, J.; Space, B. Capturing the H2–Metal Interaction in Mg-MOF-74 Using Classical Polarization. J. Phys. Chem C, 2014, 118(39): 22683-22690. 58PDF Image | swing adsorption processes for CO2 capture in selected MOFs and zeolites
PDF Search Title:
swing adsorption processes for CO2 capture in selected MOFs and zeolitesOriginal File Name Searched:
679077.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)