swing adsorption processes for CO2 capture in selected MOFs and zeolites

PDF Publication Title:

swing adsorption processes for CO2 capture in selected MOFs and zeolites ( swing-adsorption-processes-co2-capture-selected-mofs-and-zeo )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 059

66 Jaramillo, E.; Auerbach, S. M. New Force Field for Na Cations in Faujasite-Type Zeolites. J. Phys. Chem. B. 1999, 103: 9589-9594. 67 Babarao, R.; Jiang, J. Unprecedentedly High Selective Adsorption of Gas Mixtures in rho Zeolite-like Metal−Organic Framework: A Molecular Simulation Study. J. Am. Chem. Soc. 2009, 131(32): 11417- 11425 68 Potoff, J. J.; Siepmann, J. I. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001, 47: 1676-1682. 69 Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123: 234505. 70 Ketko, M. H.; Kamath, G.; Potoff, J. J. Development of an Optimized Intermolecular Potential for Sulfur Dioxide. J. Phys. Chem. C, 2011, 115(17): 4949-4954. 71 Bourasseau, E.; Lachet, V.; Desbiens, N.; Maillet, J. B.; Teuler, J. M.; Ungerer, P. Thermodynamic behavior of the CO2+ NO2/N2O4 mixture: a Monte Carlo simulation study. J. Phys. Chem B, 2008, 112(49): 15783-15792. 72 Peng, D. Y.; Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam., 1976, 15: 59-64. 73 Vlugt, T. J. H.; García-Pérez, E.; Dubbeldam, D.; Ban, S.; Calero, S. Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. J. Chem. Theory Comput. 2008, 4: 1107–1118. 74 Wiersum, D.; Chang, J. S.; Serre, C.; Llewellyn, P. L. An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks. Langmuir. 2013, 29: 3301-3309. 75 Samanta, A.; Zhao, A.; Shimizu, G. K. H:, Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2012, 51: 1438–1463. 76 Pacciani, R.; Torres, J.; Solsona, P.; Coe, C.; Quinn, R.; Hufton, J.; Golden, T.; Vega, L. F. Influence of the Concentration of CO2 and SO2 on the Absorption of CO2 by a Lithium Orthosilicate-Based Absorbent. Environ. Sci. Technol. 2011, 45: 7083-7088. 77 Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications – A review. Energy. 2010, 35: 2610–2628. 78 Bae, Y.-S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem., Int. Ed., 2011, 50: 11586-11596. 79 Skarstrom, C. W. Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960. 80 Chung, Y.; Na, B. K.; Song, H. K. Short-cut evaluation of pressure swing adsorption systems, Comput. Chem. Eng., 1998, 22: 637–640. 81 Chan, Y. N.; Hill, F. B.; Wong, Y. W. Equilibrium theory of a pressure swing adsorption process, Chem. Eng. Sci., 1981 36: 243-251. 82 Joss, L.; Gazzani, M.; Hefti, M.; Marx, D.; Mazzotti, M. Temperature Swing Adsorption for the Recovery of the Heavy Component: An Equilibrium-Based Shortcut Model, Ind. Eng. Chem. Res., 2015, 54: 3027−3038. 83 Chaffee, A. L.; Knowles, G. P.; Liang, Z.; Zhang, J.; Xiao, P.; Webley, P. A. CO2 capture by adsorption: materials and process development, Int. J. Greenh. Gas Control. 2007, 1: 11-18. 84 Riboldi, L.; Bolland, O.; Ngoy, J. M.; Wagner, N. Full-plant analysis of a PSA CO2 capture unit integrated in coal-fired power plants: post- and pre-combustion scenarios. Energy Procedia. 2014, 63: 2289-2304. 85 Huck, J. M.; Lin, L.-C.; Berger, A. H.; Shahrak, M. N.; Martin, R. L.; Bhown, A. S.; Haranczyk, M.; Reuterb, K.; Smit, B. Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 2014, 7: 4132–4146. 86 Sculley, J. P.; Verdegaal, W. M.; Lu, W. G.; Wriedt, M.; Zhou, H. High-throughput analytical model to evaluate materials for temperature swing adsorption processes, Adv. Mater. 2013, 25: 3957-3961. 59

PDF Image | swing adsorption processes for CO2 capture in selected MOFs and zeolites

PDF Search Title:

swing adsorption processes for CO2 capture in selected MOFs and zeolites

Original File Name Searched:

679077.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)