logo

Mean-Line Design of a Supercritical CO2 Micro Axial Turbine

PDF Publication Title:

Mean-Line Design of a Supercritical CO2 Micro Axial Turbine ( mean-line-design-supercritical-co2-micro-axial-turbine )

Next Page View | Return to Search List

Text from PDF Page: 001

applied sciences Article Mean-Line Design of a Supercritical CO2 Micro Axial Turbine Salma I. Salah * , Mahmoud A. Khader, Martin T. White and Abdulnaser I. Sayma School of Mathematics, Computer Science and Engineering, City University of London, Northampton Square, London EC1V 0HB, UK; M.Khader@city.ac.uk (M.A.K.); Martin.White@city.ac.uk (M.T.W.); A.Sayma@city.ac.uk (A.I.S.) * Correspondence: salma.salah.2@city.ac.uk Received: 28 May 2020 ; Accepted: 27 June 2020; Published: 23 July 2020 􏰁􏰂􏰃 􏰅􏰆􏰇 􏰈􏰉􏰊􏰋􏰌􏰂􏰍 Abstract: Supercritical carbon dioxide (sCO2) power cycles are promising candidates for concentrated-solar power and waste-heat recovery applications, having advantages of compact turbomachinery and high cycle efficiencies at heat-source temperature in the range of 400 to 800 ◦C. However, for distributed-scale systems (0.1–1.0 MW) the choice of turbomachinery type is unclear. Radial turbines are known to be an effective machine for micro-scale applications. Alternatively, feasible single-stage axial turbine designs could be achieved allowing for better heat transfer control and improved bearing life. Thus, the aim of this study is to investigate the design of a single-stage 100 kW sCO2 axial turbine through the identification of optimal turbine design parameters from both mechanical and aerodynamic performance perspectives. For this purpose, a preliminary design tool has been developed and refined by accounting for passage losses using loss models that are widely used for the design of turbomachinery operating with fluids such as air or steam. The designs were assessed for a turbine that runs at inlet conditions of 923 K, 170 bar, expansion ratio of 3 and shaft speeds of 150k, 200k and 250k RPM respectively. It was found that feasible single-stage designs could be achieved if the turbine is designed with a high loading coefficient and low flow coefficient. Moreover, a turbine with the lowest degree of reaction, over a specified range from 0 to 0.5, was found to achieve the highest efficiency and highest inlet rotor angles. Keywords: concentrated-solar power, supercritical carbon dioxide cycle, axial turbine design, micro-scale turbomachinery design. 1. Introduction Micro-gas turbines coupled with concentrated-solar power systems (CSP) can provide a viable solution for renewable energy generation. They have been shown to be ideally suited for small-scale standalone and off-grid applications [1]. However, micro-gas turbines experience larger losses in the system components, and hence achieve lower thermal efficiencies, compared to large-scale gas turbines. Thus, for a high thermal efficiency, in the range of 40 to 50%, the system needs to operate at high heat-source temperatures, above 600 ◦C. In comparison, cycles operating with supercritical carbon dioxide (sCO2) can achieve similar thermal efficiencies at more moderate temperatures. Therefore, sCO2 can be considered as a potential candidate for concentrated-solar power applications, particularly for stand-alone solar dish units; offering a simple layout, high-power density and compact structures [2]. Despite the promising potential of sCO2, sCO2 turbomachine design is still a developing field. However, turbine performance is one of the main factors that affects the cycle performance; for example, a 2% increase in turbine efficiency has been shown to result in a 1% enhancement in the thermodynamic cycle efficiency [3]. This would have a significant impact on cost reduction of the solar power system Appl. Sci. 2020, 10, 5069; doi:10.3390/app10155069 www.mdpi.com/journal/applsci

PDF Image | Mean-Line Design of a Supercritical CO2 Micro Axial Turbine

mean-line-design-supercritical-co2-micro-axial-turbine-001

PDF Search Title:

Mean-Line Design of a Supercritical CO2 Micro Axial Turbine

Original File Name Searched:

applsci-10-05069-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP