logo

Residue Cost Formation of a High Bypass Turbofan Engine

PDF Publication Title:

Residue Cost Formation of a High Bypass Turbofan Engine ( residue-cost-formation-high-bypass-turbofan-engine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 002

Appl. Sci. 2020, 10, 9060 2 of 25 unavoidable formation of residues (i.e., waste heat dissipated from the engine and the chemical exergy of combustion gases). For these energy systems, residues are considered an exergy loss because they cannot be reused and they contribute to environmental pollution. Thermoeconomics is a powerful analytical tool for cost accounting that is based on exergy cost theory (ECT), which combines the second law of thermodynamics and economics [10]. It provides a rationale for assessing the production cost of energy systems in terms of the consumption of natural resources and their impact on the environment, money, and system irreversibilities [11]. Thermoeconomics can be used to help design, diagnose, and optimize complex energy systems. More precisely, it can help to determine how energy and resources degrade, identify which systems work better, improve the design to reduce consumption, and prevent residues from damaging the environment [12]. Exergy cost theory offers a procedure for determining the production costs of productive components of a system. This theory has been extended to dissipative components, but does not present a general procedure for identifying residue formation costs and their effect on the production costs [10]. The best residue distribution criteria among possible alternatives are still an open question [13–16]. Valero et al. proposed an exergoeconomic methodology known as symbolic thermoeconomics to determine the process cost of functional products and residues and establish a mathematical basis for the production cost assessment. It develops a productive scheme (i.e., productive structure) of the exergy flow distribution throughout the system and its interaction with the environment, which are obtained from its physical structure [10,17]. This methodology formulates two alternative representations for the productive structure of a system: fuel-product-residue (FPR) and product-fuel-residue (PFR). These respectively use the external resources and plant product of the system as known information. Both approaches lead to the same results in terms of costs. The FPR representation is mainly adopted for cost accounting, whereas the PFR representation is highly useful for thermoeconomic diagnosis [18]. Thermoeconomic diagnosis is focused on identifying and interpreting anomalously functioning components and evaluating the effect of each component on additional fuel consumption. Symbolic thermoeconomics also includes the identification of malfunctions and dysfunctions to account for the impact of anomalies on fuel consumption [19,20]. The main motivation of this study is to address the lack of exergoeconomic analysis on the contribution of residue formation to the production cost of turbofan engines. This paper is organized into six different sections. In Section 2, a brief description of a turbofan is presented. Section 3 contains the model, derived from the energy balances of the turbofan and its components, to predict the thermodynamics states of the aircraft engine. Section 4 presents the turbofan productive structure, the exergy balance equations of its components, and the fuel-product-residue table. Section 5 exposes a summary of the mathematical basis for the cost assessment and the formation process of residues. Section 6 presents a summary of thermoeconomic diagnosis theory based on the malfunction and dysfunction analysis. Section 7 deals with the application of the aforementioned methodologies to a GE90-115B aircraft engine at takeoff condition and a thrust requirement of 510 kN, and the malfunction analysis is performed to quantify the effects of a decrease in compressor efficiency (malfunction) in the other components of the¡ engine. Finally, the main contributions of the paper and the discussions on the results are summarized in Section 8. 2. System Description 2.1. General Description of the Engine Operation Turbofan engines with a high bypass ratio are used in considerably large commercial and military transport aircraft. Particularly in modern aircraft, this part of the engine generates 75–80% of the total thrust. Figure 1 shows a schematic of a turbofan engine. From far upstream, where the air velocity relative to the engine is given by the flight velocity (w), the air is brought to the diffuser (D), which decreases its velocity in the flow direction. The air mass flow rate (m ̇ a) is carried to the fan (F); a fraction of the

PDF Image | Residue Cost Formation of a High Bypass Turbofan Engine

residue-cost-formation-high-bypass-turbofan-engine-002

PDF Search Title:

Residue Cost Formation of a High Bypass Turbofan Engine

Original File Name Searched:

applsci-10-09060-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP