PDF Publication Title:
Text from PDF Page: 016
Sustainability 2015, 7 15377 The isentropic efficiency is considered to be at a maximum if the pressure after the isochoric pressurization section is the same as the condenser pressure. If the pressures are higher or lower, throttling or additional work input are needed. These additional processes introduce irreversibilities since they do not contribute to useful work. High pressure ratios introduce additional leakage since the leakage mass flow rate is a function of input and output pressures. The system expander using R134a has the highest isentropic efficiency (52%) while that using n-pentane has the lowest (50.3%). These values are relatively low and suggest that this expander has significant losses due to friction and leakage. From the exergo-economic analysis, the unit cost of electricity is calculated with the optimized results. The results are useful in identifying which fluid has the lowest electrical output unit cost. From Table 5, toluene and R123 have unit electrical costs of 1.14 USD/kWh and 0.49 USD/kWh, respectively, which are the highest of all the working fluids considered. Systems using R134a, iso-butane and R600 exhibit the lowest unit costs of electricity, with values of 0.08, 0.10 and 0.14 USD/kWh, respectively. These costs reflect the lowest price that needs to be charged for the electricity and depend significantly on the amount of work output. The working fluids with the highest unit cost for electricity are seen to have the lowest electrical work outputs. Conversely, the working fluids with the highest electrical work outputs have the lowest electricity rates. For instance, systems using R134a, iso-butane and R600 generate 396.7, 301.7 and 226 W of electrical power, respectively, while those using toluene and R123 generate 20.8 and 61.3 W of electrical power, respectively. The difference in pressure from inlet to outlet for the expander plays a large role in determining its work output. Since the torque produced by the expander is directly related to this pressure difference, it is useful to analyze this effect to help explain the work outputs of systems using each working fluid. The expander using R134a has the highest pressure difference (1389 kPa) and that using toluene the lowest (58.3 kPa). Other working fluids like R123 and n-pentane exhibit a low pressure difference, which corresponds to low electrical power outputs. The work output rate also corresponds to the heat input rate needed by the system. Systems using working fluids that lead to high work output rates such as R134a and iso-butane have high heat input rates. The system using R134a requires a heat input rate of almost 7.7 kW to produce 396.7 W of electrical power. The lowest heat input rate is needed for the system using toluene, which requires a heat input of 560 W to generate 20.8 W of electricity. 4.1. Exergy Analysis Table 6 shows the exergy destruction breakdown for the system for each working fluid considered. The exergy destruction rate for the overall system using R134a is 1.3 kW. Most of the exergy destruction occurs is in the boiler (59.7%), and is due to the irreversible heat transfer processes in that component. The expander is responsible for almost 32% of the exergy destruction. These results suggest that there the improvement potentials are large for these components. This large share of exergy destruction in the expander is a consequence of the low expander isentropic efficiency of 52%. Large-scale systems typically have much higher expander isentropic efficiencies, approaching 80% to 90%. In order for the systems considered here to be competitive, the isentropic efficiency of its expander likely needs to improve. For the system using R227ea, the boiler is responsible for most of the system exergy destruction. Due to the larger amount of regeneration needed for this fluid (since it is a dry fluid), it exhibits relatively more exergy destruction in the regenerator. The condenser exergy destruction isPDF Image | Selection of Optimum Working Fluid for Organic Rankine Cycles
PDF Search Title:
Selection of Optimum Working Fluid for Organic Rankine CyclesOriginal File Name Searched:
sustainability-07-15362.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |