logo

Small Scale Organic Rankine Cycle (ORC)

PDF Publication Title:

Small Scale Organic Rankine Cycle (ORC) ( small-scale-organic-rankine-cycle-orc )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Energies 2017, 10, 413 7 of 26 The benefits of installing ORC technology can be two-fold. There is the option for those factories that consume electricity to produce it through an ORC plant as opposed to buying it from the grid at its market price. Alternatively, there exists the opportunity to install an ORC plant with the objective to obtain an income from selling the electricity produced back to the grid. In the former case, the investor can calculate the return on investment based on the savings on the energy bill plus the incentives from feed-in tariffs (if any). In the latter case, the investor covers his/her expenses through the earnings of selling the energy and the subsidies resulting in a reduced investment cost (see Table 1). The ORC technology attractiveness depends on the Payback Period (PBP) offered to the end user. In this study, it has been assumed that a three-year PBP guarantees the diffusion of a technology. Different possible commercial scenarios are analysed to provide an overview of the convenience for ORC companies to run businesses in this sector, assuming that the production cost lies on the trend line presented in Figure 1. For the sake of simplicity, it has been assumed that the ORC plant is produced and sold from an ORC company directly to an end user (i.e., an industrial company, an engine operator, etc.). The revenue that an ORC company can achieve has been evaluated, considering a three-year PBP for the end user. As a worst case scenario, the absence of investment incentives has been considered. Specifically, three different business cases are investigated: 1. Case 1: An industrial company invests in the installation of an ORC system to produce the electrical energy demand of its factory. The ORC plant is coupled to process waste heat. The investment is paid back from the savings on the energy bill since the electricity is not purchased any more at the market price from the grid. 2. Case 2: A stationary engine operator installs an ORC unit to generate additional power by recovering the thermal energy in the exhaust gasses to sell it to the grid at the actual market price. In this case, the income depends on the price at which the grid purchases the energy produced by the ORC plant (see Figure 4). 3. Case 3: An ORC plant is installed to produce electrical energy from a renewable energy source, such as biomass, solar or geothermal energy. Such a plant is eligible for the feed-in tariff. Notice that Cases 1 and 2 refer to the ORC technology applied to waste heat recovery systems, which is not considered as a renewable energy. In this circumstance, incentives are not provided. Case 3, instead, takes advantage of the incentives for the production of electricity from a renewable source. Italy, Germany, the United Kingdom and France have been investigated in this work. However, the reasoning can be easily extended to different countries. As concerns case 3, an average value for the feed in tariffs has been considered for each country analysed among those presented in Figure 3. Specifically, 20 ect/kWh, 17 ect/kWh, 7.92 ect/kWh and 9.745 ect/kWh have been selected respectively for Italy, Germany, the United Kingdom and France. In addition, the United Kingdom provides an extra 5.78 ect/kWh benefit to the end users who export energy to the grid, which has been included in the calculations. The ORC plant has been assumed to operate 85% of the time, which corresponds to 7446 h/year. The operation and maintenance (O&M) costs have been considered equal to 3 ect/kW. The time value of the money and the opportunity cost have been evaluated applying a 4% discount rate [30]. Furthermore, a 2% inflation rate has been considered. Therefore, the calculated nominal discount rate is 6.08%. Lemmens [6], in his cost analysis for a 375-kW ORC system, considers that the integration costs are 11% of the total cost of the plant. The impact of the installation costs decreases with the size of the plant. It must be noted that the integration costs have not been included in this study, primarily because they depend highly on the plant and heat source whereat the ORC will be coupled. ORC companies are aiming at creating semi-independent ORC systems for low power outputs, effectively minimizing installation costs. A high level of commercial maturity for small-scale ORC systems is likely to come from applications that require low customization and enable high volume sales. Such applications include waste heat recovery from ICEs and gas turbines, where integration costs are likely to be lower. Instead, typical large-scale ORC systems have been

PDF Image | Small Scale Organic Rankine Cycle (ORC)

small-scale-organic-rankine-cycle-orc-007

PDF Search Title:

Small Scale Organic Rankine Cycle (ORC)

Original File Name Searched:

energies-10-00413-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP