logo

Solar Assisted Heat Pump with Seasonal Heat Storage

PDF Publication Title:

Solar Assisted Heat Pump with Seasonal Heat Storage ( solar-assisted-heat-pump-with-seasonal-heat-storage )

Next Page View | Return to Search List

Text from PDF Page: 001

entropy Article Performance and Exergy Analyses of a Solar Assisted Heat Pump with Seasonal Heat Storage and Grey Water Heat Recovery Unit Primož Poredoš 1,*, Boris Vidrih 1 and Alojz Poredoš 2 􏰁􏰂􏰃 􏰅􏰆􏰇 􏰈􏰉􏰊􏰋􏰌􏰂􏰍 Citation: Poredoš, P.; Vidrih, B.; Poredoš, A. Performance and Exergy Analyses of a Solar Assisted Heat Pump with Seasonal Heat Storage and Grey Water Heat Recovery Unit. Entropy2021,23,47. https:// doi.org/10.3390/e23010047 Received: 9 December 2020 Accepted: 28 December 2020 Published: 30 December 2020 Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- ms in published maps and institutio- nal affiliations. Copyright: © 2020 by the authors. Li- censee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and con- ditions of the Creative Commons At- tribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Abstract: The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: 1. A NG and auxiliary cooling unit; 2. Solely HP, 3. HP with additional seasonal heat storage (SHS) and a solar thermal collector (STC); 4. HP with SHS, a STC and a grey water (GW) recovery unit. The assessment of exergy efficiencies for each case was based on the transient systems simulation program TRNSYS, which was used for the simulation of energy use for space heating and cooling of the building, sanitary hot water production, and the thermal response of the seasonal heat storage and solar thermal system. The results show that an enormous waste of exergy is observed by the system based on an NG boiler (with annual overall exergy efficiency of 0.11) in comparison to the most efficient systems, based on HP water–water with a seasonal heat storage and solar thermal collector with the efficiency of 0.47. The same system with an added GW unit exhibits lower water temperatures, resulting in the exergy efficiency of 0.43. The other three systems, based on air–, water–, and ground–water HPs, show significantly lower annual source water temperatures (10.9, 11.0, 11.0, respectively) compared to systems with SHS and SHS + GW, with temperatures of 28.8 and 19.3 K, respectively. Keywords: exergy efficiency; grey water heat recovery unit; seasonal heat storage; solar-assisted heat pump 1. Introduction The reducing of energy consumption and the lowering of greenhouse gas emissions play an important role in the sustainable development of future society. The measures taken so far to achieve the energy and environmental targets by 2030 and 2050 are showing positive results but are not yet ambitious enough or sufficiently effective. Energy consumption for heating and cooling in buildings and industry accounts for almost half of total energy consumption in all sectors [1]. Therefore, the heating and cooling sector has a huge potential to reduce primary energy consumption and achieve sustainable development objectives. The share of fossil fuels is almost 75%. The share of renewable energy sources (RES) for heating and cooling can be increased by using solar heat directly for heating or cooling as “free cooling”, but to a limited extent due to geographical and climatic conditions. Potential fluctuations can be compensated by different types of electrical energy storage, e.g., electrochemical energy storage (batteries). By balancing the daily fluctuations of the sources, we can significantly reduce the required installed capacity of heating or cooling systems. Seasonal storage of heating or cooling energy enables us to transfer energy from the time of surplus to the time of deficit. In most cases, a heat pump (HP) can be used very efficiently to fully cover the demand for heating 1 Laboratory for Refrigeration and District Energy, Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; boris.vidrih@fs.uni-lj.si Slovenian Energy Association, 1000 Ljubljana, Slovenia; alojz.poredos@sze.si 2 * Correspondence: primoz.poredos@fs.uni-lj.si; Tel.: +386-1-4771-446 Entropy 2021, 23, 47. https://doi.org/10.3390/e23010047 https://www.mdpi.com/journal/entropy

PDF Image | Solar Assisted Heat Pump with Seasonal Heat Storage

solar-assisted-heat-pump-with-seasonal-heat-storage-001

PDF Search Title:

Solar Assisted Heat Pump with Seasonal Heat Storage

Original File Name Searched:

entropy-23-00047.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP