Boosting Zn Battery by Coating a Zeolite‐Based Cation‐Exchange

PDF Publication Title:

Boosting Zn Battery by Coating a Zeolite‐Based Cation‐Exchange ( boosting-zn-battery-by-coating-zeolite‐based-cation‐exchange )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

82 Page 12 of 13 14. L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm. 201801090 15. Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https:// doi.org/10.1016/j.ensm.2020.01.032 16. A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strate- gies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10. 1016/j.jechem.2021.04.016 17. V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, Unde- sired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 6(5), 1773–1785 (2021). https://doi.org/10.1021/ acsenergylett.1c00393 18. X. Guo, J. Zhou, C. Bai, X. Li, G. Fang et al., Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 16, 100396 (2020). https://doi.org/10. 1016/j.mtener.2020.100396 19. S.H. Kim, S.M. Oh, Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells. J. Power Sources 72(2), 150–158 (1998). https://doi.org/10. 1016/S0378-7753(97)02703-1 20. N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x 21. G. Li, Z. Yang, Y. Jiang, W. Zhang, Y. Huang, Hybrid aque- ous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016). https://doi.org/10.1016/j.jpowsour.2016. 01.058 22. J. Ma, M. Liu, Y. He, J. Zhang, Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int Ed. 60(23), 12636– 12647 (2021). https://doi.org/10.1002/anie.202009871 23. H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal– organic framework as a multifunctional ionic sieve mem- brane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32(38), 2004240 (2020). https://doi.org/10.1002/adma.20200 4240 24. Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conver- sion. Nat. Commun. 12, 170 (2021). https://doi.org/10.1038/ s41467-020-20331-9 25. C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6(4), 378–387 (2021). https://doi.org/10.1038/ s41560-021-00789-7 26. C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A long cycle life, self-healing zinc–iodine flow battery with high power density. Angew. Chem. Int. Ed. 57(35), 11171–11176 (2018). https:// doi.org/10.1002/anie.201803122 Nano-Micro Lett. (2022) 14:82 27. L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li et al., Electrocata- lytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60(7), 3791–3798 (2021). https://doi.org/10. 1002/anie.202014447 28. C. Bai, F. Cai, L. Wang, S. Guo, X. Liu et al., A sustainable aqueous Zn-I2 battery. Nano Res. 11(7), 3548–3554 (2018). https://doi.org/10.1007/s12274-017-1920-9 29. W. Li, K. Wang, K. Jiang, A high energy efficiency and long life aqueous Zn–I2 battery. J. Mater. Chem. A 8(7), 3785–3794 (2020). https://doi.org/10.1039/c9ta13081k 30. Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, J. Chen, Rechargeable lithium- iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15(9), 5982–5987 (2015). https://doi.org/10.1021/acs. nanolett.5b02116 31. L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunc- tional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007 32. Y. He, M. Liu, J. Zhang, Rational modulation of carbon fib- ers for high-performance zinc–iodine batteries. Adv. Sustain. Syst. 4(11), 2000138 (2020). https://doi.org/10.1002/adsu. 202000138 33. X. Li, N. Li, Z. Huang, Z. Chen, G. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I− conversion chem- istry by mxene confinement. Adv. Mater. 33(8), 2006897 (2021). https://doi.org/10.1002/adma.202006897 34. W. Shang, J. Zhu, Y. Liu, L. Kang, S. Liu et al., Establishing high-performance quasi-solid Zn/I2 batteries with alginate- based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13(21), 24756–24764 (2021). https://doi.org/10.1021/acsami. 1c03804 35. G.M. Weng, Z. Li, G. Cong, Y. Zhou, Y.C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Environ. Sci. 10(3), 735–741 (2017). https://doi.org/10.1039/C6EE03554J 36. Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5(5), 1119–1142 (2021). https://doi.org/10.1016/j.joule. 2021.03.024 37. J.N. Hao, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263 38. L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10. 1038/s41565-021-00905-4 39. X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batter- ies under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416 40. S. Liu, W. Shang, Y. Yang, D. Kang, C. Li et al., Effects of I3- electrolyte additive on the electrochemical performance of © The authors https://doi.org/10.1007/s40820-022-00825-5

PDF Image | Boosting Zn Battery by Coating a Zeolite‐Based Cation‐Exchange

PDF Search Title:

Boosting Zn Battery by Coating a Zeolite‐Based Cation‐Exchange

Original File Name Searched:

Shang2022_ZnI-Battery.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)