PDF Publication Title:
Text from PDF Page: 013
Nano-Micro Lett. (2022) 14:82 Zn anodes and Zn/α-MnO2 batteries. Batter. Supercaps 5(1), 202100221 (2021). https://doi.org/10.1002/batt.202100221 41. X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/ s41586-021-03410-9 42. H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu et al., Reducing water activity by zeolite molecular sieve membrane for long- life rechargeable zinc battery. Adv. Mater. 33(38), 2102415 (2021). https://doi.org/10.1002/adma.202102415 43. M. Inoue, Y. Tada, K. Suganuma, H. Ishiguro, Thermal sta- bility of poly(vinylidene fluoride) films pre-annealed at vari- ous temperatures. Polym. Degrad. Stab. 92(10), 1833–1840 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07. 003 44. K. Okhotnikov, T. Charpentier, S. Cadars, Supercell program: a combinatorial structure-generation approach for the local- level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8(1), 17 (2016). https://doi.org/10. 1186/s13321-016-0129-3 45. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysR evB.50.17953 46. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865– 3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865 47. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/ 10.1103/physrevb.54.11169 48. H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–con- ductor interface toward high-rate and stable zinc metal batter- ies. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi. org/10.1002/aenm.202100186 49. A. Lafuma, D. Quéré, Superhydrophobic states. Nat. Mater. 2(7), 457–460 (2003). https://doi.org/10.1038/nmat924 50. S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19(21), 3423–3424 (2007). https://doi.org/10.1002/ adma.200700934 51. S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang et al., Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltra- tion membranes via postfabrication grafting of surface-tai- lored silica nanoparticles. ACS Appl. Mater. Interfaces 5(14), 6694–6703 (2013). https://doi.org/10.1021/am401462e 52. C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-func- tional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599 Page 13 of 13 82 53. Y.M. Kwon, J. Kim, K.Y. Cho, S. Yoon, Ion shielding func- tional separator using halloysite containing a negative func- tional moiety for stability improvement of Li–S batteries. J. Energy Chem. 60, 334–340 (2021). https://doi.org/10.1016/j. jechem.2021.01.029 54. S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 bat- tery. Energy Storage Mater. 28, 205–215 (2020). https://doi. org/10.1016/j.ensm.2020.03.011 55. A. Ghosh, C. Wang, P. Kofinas, Block copolymer solid battery electrolyte with high Li-ion transference number. J. Electro- chem. Soc. 157(7), A846 (2010). https://doi.org/10.1149/1. 3428710 56. R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite forma- tion for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478 57. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16 58. C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lith- ium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4(7), 551–559 (2019). https://doi. org/10.1038/s41560-019-0390-6 59. L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional znse protec- tive layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31(26), 2100186 (2021). https://doi.org/10.1002/ adfm.202100186 60. O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon et al., High-dielectric polymer coating for uniform lithium deposi- tion in anode-free lithium batteries. ACS Energy Lett. 6(12), 4416–4425 (2021). https://doi.org/10.1021/acsenergylett. 1c02224 61. Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937 62. Y. Li, L. Liu, H. Li, F. Cheng, J. Chen, Rechargeable aqueous zinc–iodine batteries: pore confining mechanism and flex- ible device application. Chem. Commun. 54(50), 6792–6795 (2018). https://doi.org/10.1039/C8CC02616E 63. J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Revers- ible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/ science.aax6873 13PDF Image | Boosting Zn Battery by Coating a Zeolite‐Based Cation‐Exchange
PDF Search Title:
Boosting Zn Battery by Coating a Zeolite‐Based Cation‐ExchangeOriginal File Name Searched:
Shang2022_ZnI-Battery.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)