membrane for aqueous redox flow batteries

PDF Publication Title:

membrane for aqueous redox flow batteries ( membrane-aqueous-redox-flow-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

8 J. Sheng et al. / Materials Today Nano 7 (2019) 100044 and ion selectivity should be kept within a reasonable range to reduce the crossover of active ions. Moreover, the chemical stability of the membranes is the basic guarantee for stable operation of RFBs, requesting the membrane material to be kept stable under harsh chemical conditions. Finally, the mechanical strength of the membrane needs to be high enough to withstand the squeeze from the assembling of the battery and the pressure from proton diffu- sion during cycling. Conflicts of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article. Acknowledgments The authors acknowledge the funding supporting from Rogers Corporation. References [1] M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652e657. [2] J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox-flow batteries: from metals to organic redox-active materials, Angew. Chem. Int. Ed. 56 (2016) 686e711. [3] U. Mani, A. Vanchiappan, Y. Qingyu, M. Srinivasan, S.-K. Maria, L.T. Mariana, Recent advancements in all-vanadium redox flow batteries, Adv. Mater. In- terfaces 3 (2016) 1500309. [4] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7 (2014) 19. [5] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (2011) 928e935. [6] J.D. Milshtein, J.L. Barton, T.J. Carney, J.A. Kowalski, R.M. Darling, F.R. Brushett, Towards low resistance nonaqueous redox flow batteries, J. Electrochem. Soc. 164 (2017) A2487eA2499. [7] X. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, Materials and systems for organic redox flow batteries: status and challenges, ACS Energy Lett 2 (2017) 2187e2204. [8] Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T.M. Lim, A. Ukil, J. Zhao, Recent development of membrane for vanadium redox flow battery applications: a review, Appl. Energy 238 (2019) 202e224. [9] A. Price, S. Bartley, S. Male, G. Cooley, A novel approach to utility-scale energy storage, Power Eng. J. 13 (1999) 122e129. [10] J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu, D. Yuan, X. Zhao, C. Xiang, C. Jia, A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery, J. Membr. Sci. 572 (2019) 110e118. [11] M. Skyllas-Kazacos, F. Grossmith, Efficient vanadium redox flow cell, J. Electrochem. Soc. 134 (1987) 2950e2953. [12] M. Skyllas-Kazacos, M. Rychcik, R.G. Robins, A. Fane, M. Green, New all- vanadium redox flow cell, J. Electrochem. Soc. 133 (1986) 1057. [13] M. Skyllas-Kazacos, Novel vanadium chloride/polyhalide redox flow battery, J. Power Sources 124 (2003) 299e302. [14] M. Skyllas-Kazacos, Y. Limantari, Kinetics of the chemical dissolution of va- nadium pentoxide in acidic bromide solutions, J. Appl. Electrochem. 34 (2004) 681e685. [15] H. Vafiadis, M. Skyllas-Kazacos, Evaluation of membranes for the novel va- nadium bromine redox flow cell, J. Membr. Sci. 279 (2006) 394e402. [16] M.J. Mader, R.E. White, A mathematical model of a Zn/Br2 cell on charge, J. Electrochem. Soc. 133 (1986) 1297e1307. [17] K. Cathro, K. Cedzynska, D. Constable, Preparation and performance of plastic- bonded-carbon bromine electrodes, J. Power Sources 19 (1987) 337e356. [18] J. Jorne, J. Kim, D. Kralik, The zinc-chlorine battery: half-cell overpotential measurements, J. Appl. Electrochem. 9 (1979) 573e579. [19] L. Zhang, J. Cheng, Y. Yang, Y. Wen, X. Wang, G. Cao, Study of zinc electrodes for single flow zinc/nickel battery application, J. Power Sources 179 (2008) 381e387. [20] Y. Ito, Nyce, R. Plivelich, M. Klein, S. Banerjee, Gas evolution in a flow-assisted zincenickel oxide battery, J. Power Sources 196 (2011) 6583e6587. [21] J. Zhang, G. Jiang, P. Xu, A.G. Kashkooli, M. Mousavi, A. Yu, Z. Chen, An all- aqueous redox flow battery with unprecedented energy density, Energy En- viron. Sci. 11 (2018) 2010e2015. [22] B. Fang, S. Iwasa, Y. Wei, T. Arai, M. Kumagai, A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application, Electrochim. Acta 47 (2002) 3971e3976. [23] F. Xue, Y. Wang, W. Wang, X. Wang, Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery, Electrochim. Acta 53 (2008) 6636e6642. [24] J.M. Stauber, S. Zhang, N. Gvozdik, Y. Jiang, L. Avena, K.J. Stevenson, C.C. Cummins, Cobalt and vanadium trimetaphosphate polyanions: synthesis, characterization, and electrochemical evaluation for non-aqueous redox-flow battery applications, J. Am. Chem. Soc. 140 (2018) 538e541. [25] L. Hruska, R. Savinell, Investigation of factors affecting performance of the iron-redox battery, J. Electrochem. Soc. 128 (1981) 18e25. [26] M.G. Verde, K.J. Carroll, Z. Wang, A. Sathrum, Y.S. Meng, Achieving high effi- ciency and cyclability in inexpensive soluble lead flow batteries, Energy En- viron. Sci. 6 (2013) 1573e1581. [27] A.D. Modestov, D.V. Konev, O.V. Tripachev, A.E. Antipov, Y.V. Tolmachev, M.A. Vorotyntsev, A hydrogen-bromate flow battery for air-deficient envi- ronments, Energy Technol. 6 (2018) 242e245. [28] L. Su, A.F. Badel, C. Cao, J.J. Hinricher, F.R. Brushett, Toward an inexpensive aqueous polysulfide-polyiodide redox flow battery, Ind. Eng. Chem. Res. 56 (2017) 9783e9792. [29] E.S. Beh, D. De Porcellinis, R.L. Gracia, K.T. Xia, R.G. Gordon, M.J. Aziz, A neutral pH aqueous organiceorganometallic redox flow battery with extremely high capacity retention, ACS Energy Lett 2 (2017) 639e644. [30] X. Song, L. Ding, L. Wang, M. He, X. Han, Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries, Electrochim. Acta 295 (2019) 1034e1043. [31] W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent progress in redox flow battery research and development, Adv. Funct. Mater. 23 (2013) 970e986. [32] J.Xi,Z.Wu,X.Qiu,L.Chen,Nafion/SiO2hybridmembraneforvanadiumredox flow battery, J. Power Sources 166 (2007) 531e536. [33] Q. Luo, H. Zhang, J. Chen, P. Qian, Y. Zhai, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Membr. Sci. 311 (2008) 98e103. [34] B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, X. Qiu, Insightsinto the impact of the Nafion membrane pretreatment process on vanadium flow battery perfor- mance, ACS Appl. Mater. Interfaces 8 (2016) 12228e12238. [35] J. Zeng, C. Jiang, Y. Wang, J. Chen, S. Zhu, B. Zhao, R. Wang, Studies on poly- pyrrole modified nafion membrane for vanadium redox flow battery, Elec- trochem. Commun. 10 (2008) 372e375. [36] H. Zhang, H. Zhang, X. Li, Z. Mai, J. Zhang, Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? Energy Environ. Sci. 4 (2011) 1676e1679. [37] H. Zhang, H. Zhang, X. Li, Z. Mai, W. Wei, Silica modified nanofiltration membranes with improved selectivity for redox flow battery application, Energy Environ. Sci. 5 (2012) 6299e6303. [38] X. Wei, L. Li, Q. Luo, Z. Nie, W. Wang, B. Li, G.-G. Xia, E. Miller, J. Chambers, Z. Yang, Microporous separators for Fe/V redox flow batteries, J. Power Sources 218 (2012) 39e45. [39] X. Wei, Q. Luo, B. Li, Z. Nie, E. Miller, J. Chambers, V.L. Sprenkle, W. Wang, Performance evaluation of microporous separator in Fe/V redox flow battery, ECS Trans 45 (26) (2013) 17e24. [40] X. Wei, Z. Nie, Q. Luo, B. Li, V. Sprenkle, W. Wang, Polyvinyl chloride/silica nanoporous composite separator for all-vanadium redox flow battery appli- cations, J. Electrochem. Soc. 160 (2013) A1215eA1218. [41] S. Shin, J. Kim, H. Kim, J. Jeon, B. Min, Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive, Desalination 186 (2005) 1e10. [42] M. Khayet, T. Matsuura, Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation, Eng. Chem. Res. 40 (2001) 5710e5718. [43] C.Y. Lai, A. Groth, S. Gray, M. Duke, Preparation and characterization of poly (vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance, Water Res. 57 (2014) 56e66. [44] X. Wang, X. Wang, L. Zhang, Q. An, H. Chen, Morphology and formation mechanism of poly (vinylidene fluoride) membranes prepared with immerse precipitation: effect of dissolving temperature, J. Macromol. Sci. B 48 (2009) 696e709. [45] M.M. Teoh, N. Peng, T.-S. Chung, L.L. Koo, Development of novel multichannel rectangular membranes with grooved outer selective surface for membrane distillation, in: Eng. Chem. Res. vol. 50, 2011, pp. 14046e14054. [46] A.J. Reuvers, Membrane Formation: Diffusion Induced Demixing Processes in Ternary Polymeric Systems, Twente University, Enschede, The Netherlands, 1987. [47] W. Xu, X. Li, J. Cao, Z. Yuan, H. Zhang, Morphology and performance of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend porous mem- branes for vanadium flow battery application, RSC Adv. 4 (2014) 40400e40406. [48] C. Zhao, Z. Wang, D. Bi, H. Lin, K. Shao, T. Fu, S. Zhong, H. Na, Blend membranes based on disulfonated poly(aryl ether ether ketone)s (SPEEK) and poly (amide imide)(PAI) for direct methanol fuel cell usages, Polymer 48 (2007) 3090e3097. [49] W.R. Bowen, S.Y. Cheng, T.A. Doneva, D.L. Oatley, Manufacture and charac- terisation of polyetherimide/sulfonated poly (ether ether ketone) blend membranes, J. Membr. Sci. 250 (2005) 1e10. [50] X. Ling, C. Jia, J. Liu, C. Yan, Preparation and characterization of sulfonated poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membrane for vanadium redox flow battery, J. Membr. Sci. 415e416 (2012) 306e312.

PDF Image | membrane for aqueous redox flow batteries

PDF Search Title:

membrane for aqueous redox flow batteries

Original File Name Searched:

ion selective memberane.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)