PDF Publication Title:
Text from PDF Page: 059
emissions from the capture, transport and injection of CO2 to storage can largely be estimated within the existing reporting methods, and emissions associated with the added energy required to operate the CCS systems can be measured and reported within the existing inventory frameworks. Specific consideration may also be required for CCS applied to biomass systems as that application would result in reporting negative emissions, for which there is currently no provision in the reporting framework. Issues relevant to international agreements impermanence of CO2 stored in the terrestrial biosphere, the UNFCCC accepted the idea that net emissions can be reduced through biological sinks, but has imposed complex rules for such accounting. CCS is markedly different in many ways from CO2 sequestration in the terrestrial biosphere (see Table TS.12), and the different forms of CCS are markedly different from one another. However, the main goal of accounting is to ensure that CCS activities produce real and quantifiable reductions in net emissions. One tonne of CO2 permanently stored has the same benefit in terms of atmospheric CO2 concentrations as one tonne of CO2 not emitted, but one tonne of CO2 temporarily stored has less benefit. It is generally accepted that this difference should be reflected in any system of accounting for reductions in net greenhouse gas emissions. Quantified commitments to limit greenhouse gas emissions and the use of emissions trading, Joint Implementation (JI) or the Clean Development Mechanism (CDM) require clear rules and methods to account for emissions and removals. Because CCS has the potential to move CO2 across traditional accounting boundaries (e.g. CO2 might be captured in one country and stored in another, or captured in one year and partly released from storage in a later year), the rules and methods for accounting may be different than those used in traditional emissions inventories. The IPCC Guidelines (IPCC 1996) and Good Practice Guidance Reports (IPCC 2000; 2003) also contain guidelines for monitoring greenhouse gas emissions. It is not known whether the revised guidelines of the IPCC for CCS can be satisfied by using monitoring techniques, particularly for geological and ocean storage. Several techniques are available for the monitoring and verification of CO2 emissions from geological storage, but they vary in applicability, detection limits and uncertainties. Currently, monitoring for geological storage can take place quantitatively at injection and qualitatively in the reservoir and by measuring surface fluxes of CO2. Ocean storage monitoring can take place by To date, most of the scientific, technical and political discussions on accounting for stored CO2 have focused on sequestration in the terrestrial biosphere. The history of these negotiations may provide some guidance for the development of accounting methods for CCS. Recognizing the potential Table TS.12. Differences in the forms of CCS and biological sinks that might influence the way accounting is conducted. Technical Summary 47 Property Terrestrial biosphere Deep ocean Geological reservoirs CO2 sequestered or stored Stock changes can be monitored over time. Injected carbon can be measured. Injected carbon can be measured. Ownership Stocks will have a discrete location and can be associated with an identifiable owner. Stocks will be mobile and may reside in international waters. Stocks may reside in reservoirs that cross national or property boundaries and differ from surface boundaries. Management decisions Storage will be subject to continuing decisions about land- use priorities. Once injected there are no further human decisions about maintenance once injection has taken place. Once injection has taken place, human decisions about continued storage involve minimal maintenance, unless storage interferes with resource recovery. Monitoring Changes in stocks can be monitored. Changes in stocks will be modelled. Release of CO2 can be detected by physical monitoring. Expected retention time Decades, depending on management decisions. Centuries, depending on depth and location of injection. Essentially permanent, barring physical disruption of the reservoir. Physical leakage Losses might occur due to disturbance, climate change, or land-use decisions. Losses will assuredly occur as an eventual consequence of marine circulation and equili- bration with the atmosphere. Losses are unlikely except in the case of disruption of the reservoir or the existence of initially undetected leakage pathways. Liability A discrete land-owner can be identified with the stock of sequestered carbon. Multiple parties may contribute to the same stock of stored CO2 and the CO2 may reside in international waters. Multiple parties may contribute to the same stock of stored CO2 that may lie under multiple countries.PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)