PDF Publication Title:
Text from PDF Page: 076
64 IPCC Special Report on Carbon dioxide Capture and Storage this into account (as discussed in Chapter 9). The likely level of seepage from geological storage reservoirs is the subject of current research described in Chapter 5. Such environmental considerations form the basis for some of the legal barriers to storage of CO2 which are discussed in Chapters 5 and 6. fossil fuels, as would the introduction of CCS. At the same time, improved technology will reduce the cost of using these fuels. All but the last of these factors will have the effect of extending the life of the fossil fuel reserves, although the introduction of CCS would tend to push up demand for them. 1.6.1.2 Fossil fuel reserves and resources In addition to the known reserves, there are significant resources that, through technological advances and the willingness of society to pay more for them, may be converted into commercial fuels in the future. Furthermore, there are thought to be large amounts of non-conventional oil (e.g., heavy oil, tars sands, shales) and gas (e.g., methane hydrates). A quantification of these in the Third Assessment Report (IPCC, 2001a) showed that fully exploiting the known oil and natural gas resources (without any emission control), plus the use of non-conventional resources, would cause atmospheric concentrations of CO2 to rise above 750 ppmv. In addition, coal resources are even larger than those of oil and gas; consuming all of them would enable the global economy to emit 5 times as much CO2 as has been released since 1850 (5,200 GtCO2 or 1,500 GtC) (see Chapter 3 in IPCC, 2001a). A scenario for achieving significant reductions in emissions but without the use of CCS (Berk et al., 2001) demonstrates the extent to which a shift away from fossil fuels would be required to stabilize at 450 ppmv by 2100. Thus, sufficient fossil fuels exist for continued use for decades to come. This means that the availability of fossil fuels does not limit the potential application of CO2 capture and storage; CCS would provide a way of limiting the environmental impact of the continued use of fossil fuels. 1.6.2 Is there sufficient storage capacity? The environmental impact of CCS, as with any other energy system, can be expressed as an external cost (IPCC, 2001d) but relatively little has been done to apply this approach to CCS and so it is not discussed further in this report. The results of an application of this approach to CCS can be found in Audus and Freund (1997). 1.6 Assessing CCS in terms of energy supply and CO2 storage Some of the first questions to be raised when the subject of CO2 capture and storage is mentioned are: • Are there enough fossil fuels to make this worthwhile? • How long will the CO2 remain in store? • Is there sufficient storage capacity and how widely is it available? These questions are closely related to the minimum time it is necessary to keep CO2 out of the atmosphere in order to mitigate climate change, and therefore to a fourth, overall, question: ‘How long does the CO2 need to remain in store?’ This section suggests an approach that can be used to answer these questions, ending with a discussion of broader issues relating to fossil fuels and other scenarios. 1.6.1 Fossil fuel availability Fossil fuels are globally traded commodities that are available to all countries. Although they may be used for much of the 21st century, the balance of the different fuels may change. CO2 capture and storage would enable countries, if they wish, to continue to include fossil fuels in their energy mix, even in the presence of severe restrictions on greenhouse gas emissions. To achieve stabilization at 550 ppmv, the Third Assessment Report (IPCC, 2001e) showed that, by 2100, the reduction in emissions might have to be about 38 GtCO2 per year (10 GtC per year)14 compared to scenarios with no mitigation action. If CO2 capture and storage is to make a significant contribution towards reducing emissions, several hundreds or thousands of plants would need to be built, each capturing 1 to 5 MtCO2 per year (0.27–1.4 MtC per year). These figures are consistent with the numbers of plants built and operated by electricity companies and other manufacturing enterprises. Whether fossil fuels will last long enough to justify the development and large-scale deployment of CO2 capture and storage depends on a number of factors, including their depletion rate, cost, and the composition of the fossil fuel resources and reserves. 1.6.1.1 Depletion rate and cost of use Initial estimates of the capacity of known storage reservoirs (IEA GHG, 2001; IPCC, 2001a) indicate that it is comparable to the amount of CO2 which would be produced for storage by such plants. More recent estimates are given in Chapters 5 and 6, although differences between the methods for estimating storage capacity demonstrate the uncertainties in these estimates; these issues are discussed in later chapters. Storage outside natural reservoirs, for example in artificial stores or by changing CO2 into another form (Freund, 2001), does not generally provide Proven coal, oil and natural gas reserves are finite, so consumption of these primary fuels can be expected to peak and then decline at some time in the future (IPCC, 2001a). However, predicting the pace at which use of fossil fuels will fall is far from simple because of the many different factors involved. Alternative sources of energy are being developed which will compete with fossil fuels, thereby extending the life of the reserves. Extracting fossil fuels from more difficult locations will increase the cost of supply, as will the use of feedstocks that require greater amounts of processing; the resultant increase in cost will also tend to reduce demand. Restrictions on emissions, whether by capping or tax, would also increase the cost of using 14 This is an indicative value calculated by averaging the figures across the six SRES marker scenarios; this value varies considerably depending on the scenario and the parameter values used in the climate model.PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |