PDF Publication Title:
Text from PDF Page: 091
Chapter 2: Sources of CO2 79 table 2.1 Properties of candidate gas streams that can be inputted to a capture process (Sources: Campbell et al., 2000; Gielen and Moriguchi, 2003; Foster Wheeler, 1998; IEA GHG, 1999; IEA GHG, 2002a). Source CO2 concentration % vol (dry) Pressure of gas stream mPaa CO2 partial pressure mPa CO2 from fuel combustion • Power station flue gas: Natural gas fired boilers Gas turbines Oil fired boilers Coal fired boilers IGCCb: after combustion 7 - 10 3-4 11 - 13 12 - 14 12 - 14 0.1 0.1 0.1 0.1 0.1 0.007 - 0.010 0.003 - 0.004 0.011 - 0.013 0.012 - 0.014 0.012 - 0.014 • Oil refinery and petrochemical plant fired heaters 8 0.1 0.008 CO2 from chemical transformations + fuel combustion • Blast furnace gas: Before combustionc After combustion 20 27 0.2 - 0.3 0.1 0.040 - 0.060 0.027 • Cement kiln off-gas 14 - 33 0.1 0.014 - 0.033 CO2 from chemical transformations before combustion • IGCC: synthesis gas after gasification 8 - 20 2-7 0.16 - 1.4 a b c 0.1 MPa = 1 bar. IGCC: Integrated gasification combined cycle. Blast furnace gas also contains significant amounts of carbon monoxide that could be converted to CO2 using the so-called shift reaction. A third type of source occurs in natural-gas processing installations. CO2 is a common impurity in natural gas, and it must be removed to improve the heating value of the gas or to meet pipeline specifications (Maddox and Morgan, 1998). 2.2.1.2 CO2 content pressure and temperatures ranging between 100°C and 200°C, depending on the heat recovery conditions. Carbon dioxide levels in flue gases vary depending on the type of fuel used and the excess air level used for optimal combustion conditions. Flue gas volumes also depend on these two variables. Natural-gas-fired power generation plants are typically combined cycle gas turbines which generate flue gases with low CO2 concentrations, typically 3–4% by volume (IEA GHG, 2002a). Coal for power generation is primarily burnt in pulverized-fuel boilers producing an atmospheric pressure flue gas stream with a CO2 content of up to 14% by volume (IEA GHG, 2002a). The newer and potentially more efficient IGCC technology has been developed for generating electricity from coal, heavy fuel oil and process carbonaceous residues. In this process the feedstock is first gasified to generate a synthesis gas (often referred to as ‘syngas’), which is burnt in a gas turbine after exhaustive gas cleaning (Campbell et al., 2000). Current IGCC plants where the synthesis gas is directly combusted in the turbine, like conventional thermal power plants, produce a flue gas with low CO2 concentrations (up to 14% by volume). At present, there are only fifteen coal- and oil-fired IGCC plants, ranging in size from 40 to 550 MW. They were started up in the 1980s and 1990s in Europe and the USA (Giuffrida et al., 2003). It should be noted that there are conceptual designs in which the CO2 can be removed before the synthesis gas is combusted, producing a high-concentration, high-pressure CO2 exhaust gas stream that could be more suitable for storage (see Chapter 3 for more details). However, no such plants have been built or are under construction. Fossil fuel consumption in boilers, furnaces and in process operations in the manufacturing industry also typically produces flue gases with low CO2 levels comparable to those in the power The properties of those streams that can be inputted to a CO2 capture process are discussed in this section. In CO2 capture, the CO2 partial pressure of the gas stream to be treated is important as well as the concentration of the stream. For practical purposes, this partial pressure can be defined as the product of the total pressure of the gas stream times the CO2 mole fraction. It is a key variable in the selection of the separation method (this is discussed further in Chapter 3). As a rule of thumb, it can be said that the lower the CO2 partial pressure of a gas stream, the more stringent the conditions for the separation process. Typical CO2 concentrations and their corresponding partial pressures for large stationary combustion sources are shown in Table 2.1, which also includes the newer Integrated Gasification Combined Cycle technology (IGCC). Typically, the majority of emission sources from the power sector and from industrial processes have low CO2 partial pressures; hence the focus of the discussion in this section. Where emission sources with high partial pressure are generated, for example in ammonia or hydrogen production, these sources require only dehydration and some compression, and therefore they have lower capture costs. Table 2.1 also provides a summary of the properties of CO2 streams originating from cement and metal production in which chemical transformations and combustion are combined. Flue gases found in power plants, furnaces in industries, blast furnaces and cement kilns are typically generated at atmosphericPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)