PDF Publication Title:
Text from PDF Page: 094
82 IPCC Special Report on Carbon dioxide Capture and Storage be low-cost options for CO2 capture and storage (van Bergen et al., 2004). Such sources emit 0.36 GtCO2 yr-1 (0.1 GtC yr-1), which equates to 3% of emissions from point sources larger than 0.1 MtCO2 yr-1 (IEA GHG, 2002b). The geographical relationship between these high-concentration sources and prospective storage opportunities is discussed in Section 2.4.3. A small number of source streams with high CO2 concentrations are already used in CO2-EOR operations in the USA and Canada (Stevens and Gale, 2000). 2.2.2 Future Figure 2.2 Range of annual global CO2 emission in he SRES scenarios (GtCO2) (Source: IPCC, 2000). extraction to fuel upgrading/cleaning, transport, conversion and end-use. Alternatively, innovation in the environmentally- oriented B1 scenario focuses on renewable and hydrogen technologies. Figure 2.1 Relationship between large stationary source emissions and number of emission sources (Source: IEA GHG, 2002a). The way in which technology change was included in the SRES scenarios depended on the particular model used. Some models applied autonomous performance improvements to fuel utilization, while others included specific technologies with detailed performance parameters. Even models with a strong emphasis on technology reflected new technologies or innovation in a rather generic manner. For example, advanced coal technology could be either an integrated coal gasification combined cycle (IGCC) plant, a pressurized fluidized bed combustion facility or any other, as-yet-unidentified, technology. The main characteristics of advanced coal technology are attractive investment costs, high thermal efficiency, potential multi-production integration and low pollution emissions – features that are prerequisites for any coal technology carrying the “advanced” label. Future anthropogenic CO2 emissions will be the product of different drivers such as demographic development, socio- economic development, and technological changes (see Chapter 1, Section 1.2.4). Because their future evolution is inherently uncertain and because numerous combinations of different rates of change are quite plausible, analysts resort to scenarios as a way of describing internally consistent, alternative images of how the future might unfold. The IPCC developed a set of greenhouse gas emission scenarios for the period until 2100 (IPCC, 2000). The scenarios show a wide range of possible future worlds and CO2 emissions (see Figure 2.2), consistent with the full uncertainty range of the underlying literature reported by Morita and Lee (1998). The scenarios are important as they provide a backdrop for determining the baseline for emission reductions that may be achieved with new technologies, including CO2 capture and storage implemented specially for such purposes. In general, technological diversity remained a feature in all scenarios, despite the fact that different clusters may dominate more in different scenarios. The trend towards cleaner and more convenient technologies, especially at the level of end-use (including transport), is common to all scenarios. In addition, transport fuels shift broadly towards supply schemes suitable for pre-combustion decarbonization. Centralized non-fossil technologies penetrate the power sector to various extents, while decentralized and home-based renewable and hydrogen- production infrastructures expand in all scenarios, but mostly in the environmentally-conscious and technology-intensive scenarios. Technology change is one of the key drivers in long-term scenarios and plays a critical role in the SRES scenarios. Future rates of innovation and diffusion are integral parts of, and vary with, the story lines. Scenario-specific technology change may differ in terms of technology clusters (i.e., the type of technologies used) or rate of diffusion. In the fossil-intensive A1FI scenario, innovation concentrates on the fossil source- to-service chains stretching from exploration and resource Despite the trend towards cleaner fuels, CO2 emissions are projected to rise at different rates, at least until 2050. Emission patterns then diverge. Scenario-specific rates of technology change (performance improvements) and technology diffusion lead to different technology mixes, fuel uses and unit sizes. As regards fossil fuel use for power generation and industrial energy supply, the number of large stationary emission sources generally increases in the absence of restrictions on CO2 emissions and a fundamental change in the characteristics of these emissionPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)