PDF Publication Title:
Text from PDF Page: 343
Chapter 7: Mineral carbonation and industrial uses of carbon dioxide 331 that is currently provided from natural geological deposits process of interest. The appropriate system boundary is shown schematically in Figure. 7.4 This is an extension of the system boundary diagrams shown earlier in Section 7.2 (Figure 7.1) and in Chapter 1 (Figure 1.4) in the context of a CO2 capture and storage system. The inputs include all fossil fuels together with all other materials used within the system. The fossil fuel input provides energy to the power or industrial plant, including the CO2 capture system, as well as the elemental carbon used as building blocks for the new chemical compound. Flows of CO2, energy and materials pass from the primary fuel-consuming processes to the industrial process that utilizes the captured CO2. This produces a desired product (containing carbon derived from captured CO2) together with other products (such as useful energy from the power plant) and environmental emissions that may include CO2 plus other gaseous, liquid or solid residuals. (Audus et Oonk, 1997). 2. The compounds produced using captured CO2 must have a long lifetime before the CO2 is liberated by combustion or other degradation processes. 3. When considering the use of captured CO2 in an industrial process, the overall system boundary must be carefully defined to include all materials, fossil fuels, energy flows, emissions and products in the full chain of processes used to produce a unit of product in order to correctly determine the overall (net) CO2 avoided. CO2 reductions solely due to energy efficiency improvements are not within the scope of this report, which is focused on capture and storage rather than efficiency improvements. Similarly while environmental benefits like those obtained in replacing organic solvents with supercritical CO2 may slightly increase the carbon chemical pool, these primary drivers are not discussed in this report. Similarly, this report specifically excludes all uses of captured CO2 to replace other chemicals that are released into the atmosphere and that have high greenhouse-gas potential, fluorocarbons for example. This area is covered by the IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: issues related to Hydrofluorocarbons and Perfluorocarbons (IPCC/TEAP, 2005). Once the overall system has been defined and analyzed in this way, it can also be compared to an alternative system that does not involve the use of captured CO2. Using basic mass and energy balances, the overall avoided CO2 can then be assessed as the difference in net emissions associated with the production of a desired product. In general, the difference could be either positive or negative, thus meaning that utilization of CO2 could result in either a decrease or increase in net CO2 emissions, depending on the details of the processes being compared. Note that only fossil fuels as a primary energy source are considered in this framework. Renewable energy sources and nuclear power are specifically excluded, as their availability would have implications well beyond the analysis of CO2 utilization options (see Chapter 8 for further discussion). Note too that other emissions from the process may include toxic or harmful materials, whose flows also could be either reduced or increased by the adoption of a CO2-based process. The third point is especially important in any effort to estimate the potential for net CO2 reductions from the substitution of a CO2-utilizing process for alternative routes to manufacturing a desired product. In particular, it is essential that the system boundary encompasses all ‘upstream’ processes in the overall life cycle and does not focus solely on the final production Figure 7.4 Material and energy balances through the system boundaries for a power plant or an industrial plant with CO2 capture, followed by an industrial process using CO2. The inputs include all fossil fuels together with all other materials used within the system. The fossil fuel input provides energy to the power or industrial plant, including the CO2 capture system, as well as the elemental carbon used as building blocks for the new chemical compound. From the primary fuel-consuming processes, flows of CO2, energy and materials pass to the industrial process, which utilizes the captured CO2. This produces a desired product (containing carbon, derived from captured CO2) together with other products (such as useful energy from the power plant) and environmental emissions that may include CO2 plus other gaseous, liquid or solid residuals.PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)