logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 363

Chapter 8: Cost and economic potential 351 different implications for the potential use of CCS technologies in emissions control cases.10 Generally, the size of the future market for CCS depends mostly on the carbon intensity of the baseline scenario and the stringency of the assumed climate stabilization target. The higher the CO2 emissions in the baseline, the more emissions reductions are required to achieve a given level of allowable emissions, and the larger the markets for CCS. Likewise, the tighter the modelled constraint on CO2 emissions, the more CCS deployment there is likely to be. This section will examine what the literature says about possible CCS deployment rates, the timing of CCS deployment, the total deployment of these systems under various scenarios, the economic impact of CCS systems and how CCS systems interact with other emissions mitigation technologies. Energy and economic models are increasingly being employed to examine how CCS technologies would deploy in environments where CO2 emissions are constrained (i.e., in control cases). A number of factors have been identified that drive the rate of CCS deployment and the scale of its ultimate deployment in modelled control cases:11 1. The policy regime; the interaction between CCS deployment and the policy regime in which energy is produced and consumed cannot be overemphasized; the magnitude and timing of early deployment depends very much on the policy environment; in particular, the cumulative extent of deployment over the long term depends strongly on the stringency of the emissions mitigation regime being modelled; comparatively low stabilization targets (e.g., 450 ppmv) foster the relatively faster penetration of CCS and the more intensive use of CCS (where ‘intensity of use’ is measured both in terms of the percentage of the emissions reduction burden shouldered by CCS as well as in terms of how many cumulative gigatonnes of CO2 is to be stored) (Dooley et al., 2004b; Gielen and Podanski, 2004; Riahi and Roehrl, 2000); 2. The reference case (baseline); storage requirements for stabilizing CO2 concentrations at a given level are very sensitive to the choice of the baseline scenario. In other words, the assumed socio-economic and demographic trends, and particularly the assumed rate of technological change, have a significant impact on CCS use (see Section 8.3.1, Riahi and Roehrl, 2000; Riahi et al., 2003); 8.3.2.1 Key drivers for the deployment of CCS 3. The nature, abundance and carbon intensity of the energy resources / fuels assumed to exist in the future (e.g., a future world where coal is abundant and easily recoverable would use CCS technologies more intensively than a world in which natural gas or other less carbon-intensive technologies are inexpensive and widely available). See Edmonds and Wise (1998) and Riahi and Roehrl (2000) for a comparison of two alternative regimes of fossil fuel availability and their interaction with CCS; . The introduction of flexible mechanisms such as emissions trading can significantly influence the extent of CCS deployment. For example, an emissions regime with few, or significantly constrained, emissions trading between nations entails the use of CCS technologies sooner and more extensively than a world in which there is efficient global emissions trading and therefore lower carbon permit prices (e.g., Dooley et al., 2000 and Scott et al., 2004). Certain regulatory regimes that explicitly emphasize CCS usage can also accelerate its deployment (e.g., Edmonds and Wise, 1998). . The rate of technological change (induced through learning or other mechanisms) assumed to take place with CCS and other salient mitigation technologies (e.g., Edmonds et al., 2003, or Riahi et al., 2003). For example, Riahi et al. (2003) indicate that the long-term economic potential of CCS systems would increase by a factor of 1.5 if it assumed that technological learning for CCS systems would take place at rates similar to those observed historically for sulphur removal technologies when compared to the situation where no technological change is specified.12 10 As no climate policy is assumed in SRES, there is also no economic value associated with carbon. The potential for CCS in SRES is therefore limited to applications where the supplementary benefit of injecting CO2 into the ground exceeds its costs (e.g., EOR or ECBM). The potential for these options is relatively small as compared to the long-term potential of CCS in stabilization scenarios. Virtually none of the global modelling exercises in the literature that incorporate SRES include these options and so there is also no CCS system deployment assumed in the baseline scenarios. suggests that CCS systems begin to deploy at a significant level 11 Integrated assessment models represent the world in an idealized way, employing different methodologies for the mathematical representation of socio- economic and technological developments in the real world. The representation of some real world factors, such as institutional barriers, inefficient legal frameworks, transaction costs of carbon permit trading, potential free-rider behaviour of geopolitical agents and the implications of public acceptance has traditionally been a challenge in modelling. These factors are represented to various degrees (often generically) in these models 2004; Wise and Dooley, 2004; McFarland et al., 2004). The only caveat to this carbon price as a lower limit for the deployment of these systems is the ‘early opportunities’ literature discussed below. The marginal value of CO2 emission reduction permits is one of the most important mechanisms through which these factors impact CCS deployment. CCS systems tend to deploy quicker and more extensively in cases with higher marginal carbon values. Most energy and economic modelling done to date when carbon dioxide prices begin to reach approximately 25– 30 US$/tCO (90–110 US$/tC) (IEA, 2004; Johnson and Keith, 2 Before turning to a specific focus on the possible contribution of CCS in various emissions mitigation scenarios, it is worth reinforcing the point that there is a broad consensus in the 12 The factor increase of 1.5 corresponds to about 250 to 360 GtCO2 of additional capture and storage over the course of the century.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-363

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP