logo

Triboelectric Nanogenerators Ocean Wave Energy Harvesting

PDF Publication Title:

Triboelectric Nanogenerators Ocean Wave Energy Harvesting ( triboelectric-nanogenerators-ocean-wave-energy-harvesting )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 003

Proceedings 2018, 2, 714 3 of 5 impact. A hybrid stepper motor (RS Pro 535-0502, RS Components Ltd., Corby, UK) attached with an acrylic layer of 20 cm × 20 cm (t = 8 mm) is used to generate the water waves motion into the water tank at different frequencies mounted on the left side of the tank. The WDSE-TENG devices were placed at the wall on the right side of the tank where the water wave breaks (at a frequency of 1.20 Hz) against the wall facing the impact of the water wave with the dielectric triboelectric layer, which generates interchange of triboelectric charges between both surfaces as shown in Figure 1d. All the WDSE-TENG prototypes and connection wires were insulated to avoid short circuit when the devices get in contact with water. The output voltage measurements were obtained with a digital oscilloscope Tektronix TDS 2014C (Premier Farnell Limited, Leeds, UK). The output current and output power of the DMSE-TENG measurements were performed using an Agilent Technologies N6705B Power analyzer (Premier Farnell Limited, Leeds, UK). 3. Experimental Results and Discussion Figure 2 illustrates the contact electrification between the water wave and the hydrophobic dielectric layers and also the working mechanism of the WDSE-TENG, which can be explained as a result of contact electrification and electrostatic induction. Before the dielectric layer makes contact with water (Figure 2a), no charge transfer occurs. When the water wave starts to contact against the dielectric layer (Figure 2b), the ionization of the surface groups on the dielectric layer will cause the dielectric layer to be negatively charged [6] and create a positively charged electrical double layer (EDL) on the contact surface of the water wave to maintain electrical neutrality [7,8] (Figure 2c). As the water wave breaks down and moves off the dielectric layer, the positive charges in the EDL can be carried away with the water and the negative charges can remain on the surface of the dielectric layer. The negative electric potential difference between the electrode and load resistor (10 MΩ) to the ground attains equilibrium as electrons flow to ground (Figure 2d). This process produces an instantaneous negative current due to the triboelectric charges on the dielectric layer, which can be retained for a long time. When another water wave makes contact with the negatively charged dielectric layer, the negative charges will attract counter ions from the water to form another positively charge EDL, and establishes a positive electric potential difference. Therefore, electrons will flow from ground and load resistor to the electrode (Figure 2e) until reaching a new equilibrium (Figure 2f). This process produces an instantaneous positive current. When the water wave breaks down and leaves the dielectric layer, a negative electric potential difference will be established between the electrode and load resistor to the ground and another new equilibrium is achieved (Figure 2g). Once the following water wave contacts with the dielectric layer of the WDSE-TENG prototype (Figure 2a–g), a continuous output will be obtained. The water wave after the impact with the dielectric layer of the WDSE-TENG prototype should not leave residual water on the dielectric hydrophobic layer surface, in an ideal situation with the objective to generate the maximum electrical output. The comparison of the three configurations for the WDSE-TENG energy harvester prototypes according to their electrical output performance measurements is shown in Figure 3a. The average output power (1.5 μW to 20 μW) was calculated from the measured VRMS (1 V to 7.3 V) and IRMS (1 μA to 5 μA) of the proposed devices. The WDSE-TENG with one dielectric layer using FEP (t = 25 μm) in contact with water produced the highest output power of 19.12 μW, which corresponds to a VRMS of 4.11 V and an IRMS of 4.80 μA (Figure 3b). The prototype with two dielectric layers of silicone rubber and aluminum as electrode produced the next highest output power, likely due to the large contact area (VRMS, IRMS and power of 7.31 V, 2.84 μA and 17.24 μW, respectively). However, the output performance decreased for the WDSE-TENG with split single electrode due to the reduced active area of 2.5 cm × 3 cm. Furthermore, the configuration of the WDSE-TENG with two distinct dielectric layers of PDMS and PTFE shown relatively poor output power performance (Figure 3a).

PDF Image | Triboelectric Nanogenerators Ocean Wave Energy Harvesting

triboelectric-nanogenerators-ocean-wave-energy-harvesting-003

PDF Search Title:

Triboelectric Nanogenerators Ocean Wave Energy Harvesting

Original File Name Searched:

proceedings-02-00714.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP